cstr commited on
Commit
d811f00
1 Parent(s): 834c15f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -2
app.py CHANGED
@@ -191,6 +191,9 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
191
  logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
192
  verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
193
 
 
 
 
194
  if pipeline_type == "faster-batched":
195
  model = WhisperModel(model_id, device="auto", compute_type=dtype)
196
  pipeline = BatchedInferencePipeline(model=model)
@@ -221,7 +224,10 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
221
  if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
222
  audio_path = download_audio(input_source, download_method)
223
  verbose_messages += f"Audio file downloaded: {audio_path}\n"
224
- if audio_path.startswith("Error"):
 
 
 
225
  yield f"Error: {audio_path}", "", None
226
  return
227
  else:
@@ -231,6 +237,8 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
231
  trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
232
  audio_path = trimmed_audio_path
233
  verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
 
 
234
 
235
  start_time_perf = time.time()
236
  if pipeline_type in ["faster-batched", "faster-sequenced"]:
@@ -285,8 +293,13 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
285
  def update_model_dropdown(pipeline_type):
286
  model_choices = get_model_options(pipeline_type)
287
  logging.info(f"Model choices for {pipeline_type}: {model_choices}")
288
- return gr.Dropdown.update(choices=model_choices, value=model_choices[0] if model_choices else None)
289
 
 
 
 
 
 
 
290
  with gr.Blocks() as iface:
291
  gr.Markdown("# Multi-Pipeline Transcription")
292
  gr.Markdown("Transcribe audio using multiple pipelines and models.")
 
191
  logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
192
  verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
193
 
194
+ if verbose:
195
+ yield verbose_messages, "", None
196
+
197
  if pipeline_type == "faster-batched":
198
  model = WhisperModel(model_id, device="auto", compute_type=dtype)
199
  pipeline = BatchedInferencePipeline(model=model)
 
224
  if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
225
  audio_path = download_audio(input_source, download_method)
226
  verbose_messages += f"Audio file downloaded: {audio_path}\n"
227
+ if verbose:
228
+ yield verbose_messages, "", None
229
+
230
+ if not audio_path or audio_path.startswith("Error"):
231
  yield f"Error: {audio_path}", "", None
232
  return
233
  else:
 
237
  trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
238
  audio_path = trimmed_audio_path
239
  verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
240
+ if verbose:
241
+ yield verbose_messages, "", None
242
 
243
  start_time_perf = time.time()
244
  if pipeline_type in ["faster-batched", "faster-sequenced"]:
 
293
  def update_model_dropdown(pipeline_type):
294
  model_choices = get_model_options(pipeline_type)
295
  logging.info(f"Model choices for {pipeline_type}: {model_choices}")
 
296
 
297
+ # Check if there are model choices available before setting the value
298
+ if model_choices:
299
+ return gr.Dropdown.update(choices=model_choices, value=model_choices[0])
300
+ else:
301
+ return gr.Dropdown.update(choices=[], value=None)
302
+
303
  with gr.Blocks() as iface:
304
  gr.Markdown("# Multi-Pipeline Transcription")
305
  gr.Markdown("Transcribe audio using multiple pipelines and models.")