Spaces:
Runtime error
Runtime error
File size: 7,510 Bytes
8b54513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import string
import numpy as np
import matplotlib.animation as animation
from matplotlib import pyplot as plt
import json
from collections import defaultdict
from bisect import bisect_left
import os
import torch
import torchaudio
torchaudio.set_audio_backend("sox_io")
def load_json(json_path: str):
"""
Load a json file
"""
with open(json_path, "r", encoding="utf-8") as f_name:
data = json.load(f_name)
return data
def check_window_signal(info_t, w_s, w_e):
length = w_e - w_s
frame_offset = int(w_s * info_t.sample_rate)
num_frames = int(length * info_t.sample_rate)
if frame_offset + num_frames > int(info_t.num_frames):
return False
else:
return True
def index_narrations(ann_path):
narration_raw = load_json(ann_path)
narration_dict = defaultdict(list)
summary_dict = defaultdict(list)
avg_len = []
for v_id, narr in narration_raw.items():
narr_list = []
summ_list = []
if "narration_pass_1" in narr:
narr_list += narr["narration_pass_1"]["narrations"]
summ_list += narr["narration_pass_1"]["summaries"]
if "narration_pass_2" in narr:
narr_list += narr["narration_pass_2"]["narrations"]
summ_list += narr["narration_pass_2"]["summaries"]
if len(narr_list) > 0:
narration_dict[v_id] = [
(
float(n_t["timestamp_sec"]),
n_t["narration_text"],
n_t["annotation_uid"],
n_t["timestamp_frame"],
)
for n_t in narr_list
]
avg_len.append(len(narration_dict[v_id]))
else:
narration_dict[v_id] = []
if len(summ_list) > 0:
summary_dict[v_id] = [
(
float(s_t["start_sec"]),
float(s_t["end_sec"]),
s_t["summary_text"],
)
for s_t in summ_list
]
else:
summary_dict[v_id] = []
# print(f"Number of Videos with narration {len(narration_dict)}")
# print(f"Avg. narration length {np.mean(avg_len)}")
# print(f"Number of Videos with summaries {len(summary_dict)}")
return narration_dict, summary_dict
def get_signal_info(signal_fn: str):
return torchaudio.info(signal_fn)
def get_signal_frames(signal_fn: str, video_start_sec: float, video_end_sec: float):
"""
Given a signal track return the frames between video_start_sec and video_end_sec
"""
info_t = get_signal_info(signal_fn)
length = video_end_sec - video_start_sec
aframes, _ = torchaudio.load(
signal_fn,
normalize=True,
frame_offset=int(video_start_sec * info_t.sample_rate),
num_frames=int(length * info_t.sample_rate),
)
return {"signal": aframes, "meta": info_t}
def tosec(value):
return value / 1000
def toms(value):
return value * 1000
def delta(first_num: float, second_num: float):
"""Compute the absolute value of the difference of two numbers"""
return abs(first_num - second_num)
def padIMU(signal, duration_sec):
"""
Pad the signal if necessary
"""
expected_elements = round(duration_sec) * 200
if signal.shape[0] > expected_elements:
signal = signal[:expected_elements, :]
elif signal.shape[0] < expected_elements:
padding = expected_elements - signal.shape[0]
padded_zeros = np.zeros((padding, 6))
signal = np.concatenate([signal, padded_zeros], 0)
# signal = signal[:expected_elements, :]
return signal
def resample(
signals: np.ndarray,
timestamps: np.ndarray,
original_sample_rate: int,
resample_rate: int,
):
"""
Resamples data to new sample rate
"""
signals = torch.as_tensor(signals)
timestamps = torch.from_numpy(timestamps).unsqueeze(-1)
signals = torchaudio.functional.resample(
waveform=signals.data.T,
orig_freq=original_sample_rate,
new_freq=resample_rate,
).T.numpy()
nsamples = len(signals)
period = 1 / resample_rate
# timestamps are expected to be shape (N, 1)
initital_seconds = timestamps[0] / 1e3
ntimes = (torch.arange(nsamples) * period).view(-1, 1) + initital_seconds
timestamps = (ntimes * 1e3).squeeze().numpy()
return signals, timestamps
def resampleIMU(signal, timestamps):
sampling_rate = int(1000 * (1 / (np.mean(np.diff(timestamps)))))
# resample all to 200hz
if sampling_rate != 200:
signal, timestamps = resample(signal, timestamps, sampling_rate, 200)
return signal, timestamps
def get_imu_frames(
imu_path,
uid: str,
video_start_sec: float,
video_end_sec: float,
):
"""
Given a IMU signal return the frames between video_start_sec and video_end_sec
"""
signal = np.load(os.path.join(imu_path, f"{uid}.npy"))
signal = signal.transpose()
timestamps = np.load(os.path.join(imu_path, f"{uid}_timestamps.npy"))
if toms(video_start_sec) > timestamps[-1] or toms(video_end_sec) > timestamps[-1]:
return None
start_id = bisect_left(timestamps, toms(video_start_sec))
end_id = bisect_left(timestamps, toms(video_end_sec))
# make sure the retrieved window interval are correct by a max of 1 sec margin
if (
delta(video_start_sec, tosec(timestamps[start_id])) > 4
or delta(video_end_sec, tosec(timestamps[end_id])) > 4
):
return None
# get the window
if start_id == end_id:
start_id -= 1
end_id += 1
signal, timestamps = signal[start_id:end_id], timestamps[start_id:end_id]
if len(signal) < 10 or len(timestamps) < 10:
return None
# resample the signal at 200hz if necessary
signal, timestamps = resampleIMU(signal, timestamps)
# pad the signal if necessary
signal = padIMU(signal, video_end_sec - video_start_sec)
sample_dict = {
"timestamp": timestamps,
"signal": torch.tensor(signal.T),
"sampling_rate": 200,
}
return sample_dict
def display_animation(frames, title, save_path_gif):
fig, ax = plt.subplots()
frames = [[ax.imshow(frames[i])] for i in range(len(frames))]
plt.title(title)
ani = animation.ArtistAnimation(fig, frames)
ani.save(save_path_gif, writer="imagemagick")
plt.close()
def display_animation_imu(frames, imu, title, save_path_gif):
fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
ax1.set_title(title)
ax2.set_title("Acc.")
ax3.set_title("Gyro.")
frames = [[ax1.imshow(frames[i])] for i in range(len(frames))]
ani = animation.ArtistAnimation(fig, frames)
ax2.plot(imu[0].cpu().numpy(), color="red")
ax2.plot(imu[1].cpu().numpy(), color="blue")
ax2.plot(imu[2].cpu().numpy(), color="green")
ax3.plot(imu[3].cpu().numpy(), color="red")
ax3.plot(imu[4].cpu().numpy(), color="blue")
ax3.plot(imu[5].cpu().numpy(), color="green")
plt.tight_layout()
ani.save(save_path_gif, writer="imagemagick")
plt.close()
def filter_narration(narration_text: str) -> bool:
if "#c" in narration_text.lower():
return True
return False
def clean_narration_text(narration_text: str) -> str:
return (
narration_text.replace("#C C ", "")
.replace("#C", "")
.replace("#unsure", "something")
.strip()
.strip(string.punctuation)
.lower()[:128]
)
|