File size: 6,339 Bytes
8b54513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import torch.nn as nn
import torch.nn.functional as F

from . import pointnet2_utils
from . import pytorch_utils as pt_utils
from typing import List


class _PointnetSAModuleBase(nn.Module):

    def __init__(self):
        super().__init__()
        self.npoint = None
        self.groupers = None
        self.mlps = None
        self.pool_method = 'max_pool'

    def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor):
        """
        :param xyz: (B, N, 3) tensor of the xyz coordinates of the features
        :param features: (B, N, C) tensor of the descriptors of the the features
        :param new_xyz:
        :return:
            new_xyz: (B, npoint, 3) tensor of the new features' xyz
            new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors
        """
        new_features_list = []

        xyz_flipped = xyz.transpose(1, 2).contiguous()
        if new_xyz is None:
            new_xyz = pointnet2_utils.gather_operation(
                xyz_flipped,
                pointnet2_utils.furthest_point_sample(xyz, self.npoint)
            ).transpose(1, 2).contiguous() if self.npoint is not None else None

        for i in range(len(self.groupers)):
            new_features = self.groupers[i](xyz, new_xyz, features)  # (B, C, npoint, nsample)

            new_features = self.mlps[i](new_features)  # (B, mlp[-1], npoint, nsample)
            if self.pool_method == 'max_pool':
                new_features = F.max_pool2d(
                    new_features, kernel_size=[1, new_features.size(3)]
                )  # (B, mlp[-1], npoint, 1)
            elif self.pool_method == 'avg_pool':
                new_features = F.avg_pool2d(
                    new_features, kernel_size=[1, new_features.size(3)]
                )  # (B, mlp[-1], npoint, 1)
            else:
                raise NotImplementedError

            new_features = new_features.squeeze(-1)  # (B, mlp[-1], npoint)
            new_features_list.append(new_features)

        return new_xyz, torch.cat(new_features_list, dim=1)


class PointnetSAModuleMSG(_PointnetSAModuleBase):
    """Pointnet set abstraction layer with multiscale grouping"""

    def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True,
                 use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
        """
        :param npoint: int
        :param radii: list of float, list of radii to group with
        :param nsamples: list of int, number of samples in each ball query
        :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale
        :param bn: whether to use batchnorm
        :param use_xyz:
        :param pool_method: max_pool / avg_pool
        :param instance_norm: whether to use instance_norm
        """
        super().__init__()

        assert len(radii) == len(nsamples) == len(mlps)

        self.npoint = npoint
        self.groupers = nn.ModuleList()
        self.mlps = nn.ModuleList()
        for i in range(len(radii)):
            radius = radii[i]
            nsample = nsamples[i]
            self.groupers.append(
                pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
                if npoint is not None else pointnet2_utils.GroupAll(use_xyz)
            )
            mlp_spec = mlps[i]
            if use_xyz:
                mlp_spec[0] += 3

            self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm))
        self.pool_method = pool_method


class PointnetSAModule(PointnetSAModuleMSG):
    """Pointnet set abstraction layer"""

    def __init__(self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None,
                 bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
        """
        :param mlp: list of int, spec of the pointnet before the global max_pool
        :param npoint: int, number of features
        :param radius: float, radius of ball
        :param nsample: int, number of samples in the ball query
        :param bn: whether to use batchnorm
        :param use_xyz:
        :param pool_method: max_pool / avg_pool
        :param instance_norm: whether to use instance_norm
        """
        super().__init__(
            mlps=[mlp], npoint=npoint, radii=[radius], nsamples=[nsample], bn=bn, use_xyz=use_xyz,
            pool_method=pool_method, instance_norm=instance_norm
        )


class PointnetFPModule(nn.Module):
    r"""Propigates the features of one set to another"""

    def __init__(self, *, mlp: List[int], bn: bool = True):
        """
        :param mlp: list of int
        :param bn: whether to use batchnorm
        """
        super().__init__()
        self.mlp = pt_utils.SharedMLP(mlp, bn=bn)

    def forward(
            self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor
    ) -> torch.Tensor:
        """
        :param unknown: (B, n, 3) tensor of the xyz positions of the unknown features
        :param known: (B, m, 3) tensor of the xyz positions of the known features
        :param unknow_feats: (B, C1, n) tensor of the features to be propigated to
        :param known_feats: (B, C2, m) tensor of features to be propigated
        :return:
            new_features: (B, mlp[-1], n) tensor of the features of the unknown features
        """
        if known is not None:
            dist, idx = pointnet2_utils.three_nn(unknown, known)
            dist_recip = 1.0 / (dist + 1e-8)
            norm = torch.sum(dist_recip, dim=2, keepdim=True)
            weight = dist_recip / norm

            interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight)
        else:
            interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1))

        if unknow_feats is not None:
            new_features = torch.cat([interpolated_feats, unknow_feats], dim=1)  # (B, C2 + C1, n)
        else:
            new_features = interpolated_feats

        new_features = new_features.unsqueeze(-1)
        new_features = self.mlp(new_features)

        return new_features.squeeze(-1)


if __name__ == "__main__":
    pass