File size: 6,173 Bytes
8b54513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch.nn as nn
from typing import List, Tuple


class SharedMLP(nn.Sequential):

    def __init__(
            self,
            args: List[int],
            *,
            bn: bool = False,
            activation=nn.ReLU(inplace=True),
            preact: bool = False,
            first: bool = False,
            name: str = "",
            instance_norm: bool = False,
    ):
        super().__init__()

        for i in range(len(args) - 1):
            self.add_module(
                name + 'layer{}'.format(i),
                Conv2d(
                    args[i],
                    args[i + 1],
                    bn=(not first or not preact or (i != 0)) and bn,
                    activation=activation
                    if (not first or not preact or (i != 0)) else None,
                    preact=preact,
                    instance_norm=instance_norm
                )
            )


class _ConvBase(nn.Sequential):

    def __init__(
            self,
            in_size,
            out_size,
            kernel_size,
            stride,
            padding,
            activation,
            bn,
            init,
            conv=None,
            batch_norm=None,
            bias=True,
            preact=False,
            name="",
            instance_norm=False,
            instance_norm_func=None
    ):
        super().__init__()

        bias = bias and (not bn)
        conv_unit = conv(
            in_size,
            out_size,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            bias=bias
        )
        init(conv_unit.weight)
        if bias:
            nn.init.constant_(conv_unit.bias, 0)

        if bn:
            if not preact:
                bn_unit = batch_norm(out_size)
            else:
                bn_unit = batch_norm(in_size)
        if instance_norm:
            if not preact:
                in_unit = instance_norm_func(out_size, affine=False, track_running_stats=False)
            else:
                in_unit = instance_norm_func(in_size, affine=False, track_running_stats=False)

        if preact:
            if bn:
                self.add_module(name + 'bn', bn_unit)

            if activation is not None:
                self.add_module(name + 'activation', activation)

            if not bn and instance_norm:
                self.add_module(name + 'in', in_unit)

        self.add_module(name + 'conv', conv_unit)

        if not preact:
            if bn:
                self.add_module(name + 'bn', bn_unit)

            if activation is not None:
                self.add_module(name + 'activation', activation)

            if not bn and instance_norm:
                self.add_module(name + 'in', in_unit)


class _BNBase(nn.Sequential):

    def __init__(self, in_size, batch_norm=None, name=""):
        super().__init__()
        self.add_module(name + "bn", batch_norm(in_size))

        nn.init.constant_(self[0].weight, 1.0)
        nn.init.constant_(self[0].bias, 0)


class BatchNorm1d(_BNBase):

    def __init__(self, in_size: int, *, name: str = ""):
        super().__init__(in_size, batch_norm=nn.BatchNorm1d, name=name)


class BatchNorm2d(_BNBase):

    def __init__(self, in_size: int, name: str = ""):
        super().__init__(in_size, batch_norm=nn.BatchNorm2d, name=name)


class Conv1d(_ConvBase):

    def __init__(
            self,
            in_size: int,
            out_size: int,
            *,
            kernel_size: int = 1,
            stride: int = 1,
            padding: int = 0,
            activation=nn.ReLU(inplace=True),
            bn: bool = False,
            init=nn.init.kaiming_normal_,
            bias: bool = True,
            preact: bool = False,
            name: str = "",
            instance_norm=False
    ):
        super().__init__(
            in_size,
            out_size,
            kernel_size,
            stride,
            padding,
            activation,
            bn,
            init,
            conv=nn.Conv1d,
            batch_norm=BatchNorm1d,
            bias=bias,
            preact=preact,
            name=name,
            instance_norm=instance_norm,
            instance_norm_func=nn.InstanceNorm1d
        )


class Conv2d(_ConvBase):

    def __init__(
            self,
            in_size: int,
            out_size: int,
            *,
            kernel_size: Tuple[int, int] = (1, 1),
            stride: Tuple[int, int] = (1, 1),
            padding: Tuple[int, int] = (0, 0),
            activation=nn.ReLU(inplace=True),
            bn: bool = False,
            init=nn.init.kaiming_normal_,
            bias: bool = True,
            preact: bool = False,
            name: str = "",
            instance_norm=False
    ):
        super().__init__(
            in_size,
            out_size,
            kernel_size,
            stride,
            padding,
            activation,
            bn,
            init,
            conv=nn.Conv2d,
            batch_norm=BatchNorm2d,
            bias=bias,
            preact=preact,
            name=name,
            instance_norm=instance_norm,
            instance_norm_func=nn.InstanceNorm2d
        )


class FC(nn.Sequential):

    def __init__(
            self,
            in_size: int,
            out_size: int,
            *,
            activation=nn.ReLU(inplace=True),
            bn: bool = False,
            init=None,
            preact: bool = False,
            name: str = ""
    ):
        super().__init__()

        fc = nn.Linear(in_size, out_size, bias=not bn)
        if init is not None:
            init(fc.weight)
        if not bn:
            nn.init.constant(fc.bias, 0)

        if preact:
            if bn:
                self.add_module(name + 'bn', BatchNorm1d(in_size))

            if activation is not None:
                self.add_module(name + 'activation', activation)

        self.add_module(name + 'fc', fc)

        if not preact:
            if bn:
                self.add_module(name + 'bn', BatchNorm1d(out_size))

            if activation is not None:
                self.add_module(name + 'activation', activation)