File size: 6,827 Bytes
1a84a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
from torch.autograd import Function
import pointnet2_cuda

class KNN(nn.Module):
    def __init__(self, neighbors, transpose_mode=True):
        super(KNN, self).__init__()
        self.neighbors = neighbors

    @torch.no_grad()
    def forward(self, support, query):
        """
        Args:
            support ([tensor]): [B, N, C]
            query ([tensor]): [B, M, C]
        Returns:
            [int]: neighbor idx. [B, M, K]
        """
        dist = torch.cdist(support, query)
        k_dist = dist.topk(k=self.neighbors, dim=1, largest=False)
        return k_dist.values, k_dist.indices.transpose(1, 2).contiguous().int()


class GroupingOperation(Function):

    @staticmethod
    @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
        """
        :param ctx:
        :param features: (B, C, N) tensor of features to group
        :param idx: (B, npoint, nsample) tensor containing the indicies of features to group with
        :return:
            output: (B, C, npoint, nsample) tensor
        """
        assert features.is_contiguous()
        assert idx.is_contiguous()

        B, nfeatures, nsample = idx.size()
        _, C, N = features.size()
        output = torch.cuda.FloatTensor(B, C, nfeatures, nsample, device=features.device)

        pointnet2_cuda.group_points_wrapper(B, C, N, nfeatures, nsample, features, idx, output)

        ctx.for_backwards = (idx, N)
        return output

    @staticmethod
    def backward(ctx, grad_out: torch.Tensor):
        """
        :param ctx:
        :param grad_out: (B, C, npoint, nsample) tensor of the gradients of the output from forward
        :return:
            grad_features: (B, C, N) gradient of the features
        """
        idx, N = ctx.for_backwards

        B, C, npoint, nsample = grad_out.size()
        grad_features = torch.zeros([B, C, N], dtype=torch.float, device=grad_out.device, requires_grad=True)
        grad_out_data = grad_out.data.contiguous()
        pointnet2_cuda.group_points_grad_wrapper(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
        return grad_features, None

grouping_operation = GroupingOperation.apply


class KNNGroup(nn.Module):
    def __init__(self, nsample: int,
                 relative_xyz=True,
                 normalize_dp=False,
                 return_only_idx=False,
                 **kwargs
                 ):
        """[summary]

        Args:
            nsample (int): maximum number of features to gather in the ball
            use_xyz (bool, optional): concate xyz. Defaults to True.
            ret_grouped_xyz (bool, optional): [description]. Defaults to False.
            normalize_dp (bool, optional): [description]. Defaults to False.
        """
        super().__init__()
        self.nsample = nsample
        self.knn = KNN(nsample, transpose_mode=True)
        self.relative_xyz = relative_xyz
        self.normalize_dp = normalize_dp
        self.return_only_idx = return_only_idx

    def forward(self, query_xyz: torch.Tensor, support_xyz: torch.Tensor, features: torch.Tensor = None):
        """
        :param query_xyz: (B, N, 3) xyz coordinates of the features
        :param support_xyz: (B, npoint, 3) centroids
        :param features: (B, C, N) descriptors of the features
        :return:
            new_features: (B, 3 + C, npoint, nsample)
        """
        _, idx = self.knn(support_xyz, query_xyz)
        if self.return_only_idx:
            return idx
        idx = idx.int()
        xyz_trans = support_xyz.transpose(1, 2).contiguous()
        grouped_xyz = grouping_operation(xyz_trans, idx)  # (B, 3, npoint, nsample)
        if self.relative_xyz:
            grouped_xyz -= query_xyz.transpose(1, 2).unsqueeze(-1)  # relative position
        if self.normalize_dp:
            grouped_xyz /= torch.amax(torch.sqrt(torch.sum(grouped_xyz**2, dim=1)), dim=(1, 2)).view(-1, 1, 1, 1)
        if features is not None:
            grouped_features = grouping_operation(features, idx)
            return grouped_xyz, grouped_features
        else:
            return grouped_xyz, None


class FurthestPointSampling(Function):
    @staticmethod
    def forward(ctx, xyz: torch.Tensor, npoint: int) -> torch.Tensor:
        """
        Uses iterative furthest point sampling to select a set of npoint features that have the largest
        minimum distance
        :param ctx:
        :param xyz: (B, N, 3) where N > npoint
        :param npoint: int, number of features in the sampled set
        :return:
             output: (B, npoint) tensor containing the set (idx)
        """
        assert xyz.is_contiguous()

        B, N, _ = xyz.size()
        # output = torch.cuda.IntTensor(B, npoint, device=xyz.device)
        # temp = torch.cuda.FloatTensor(B, N, device=xyz.device).fill_(1e10)
        output = torch.cuda.IntTensor(B, npoint)
        temp = torch.cuda.FloatTensor(B, N).fill_(1e10)

        pointnet2_cuda.furthest_point_sampling_wrapper(
            B, N, npoint, xyz, temp, output)
        return output

    @staticmethod
    def backward(xyz, a=None):
        return None, None

furthest_point_sample = FurthestPointSampling.apply


class PointPatchEmbed(nn.Module):

    def __init__(self,
                 sample_ratio=0.0625,
                 sample_number=1024,
                 group_size=32,
                 in_channels=6,
                 channels=1024,
                 kernel_size=1,
                 stride=1,
                 normalize_dp=False,
                 relative_xyz=True,
                 ):
        super().__init__()
        self.sample_ratio = sample_ratio
        self.sample_number = sample_number
        self.group_size = group_size

        self.sample_fn = furthest_point_sample
        self.grouper = KNNGroup(self.group_size, relative_xyz=relative_xyz, normalize_dp=normalize_dp)
        
        self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=kernel_size, stride=stride)


    def forward(self, x):
        # coordinates
        p = x[:, :, 3:].contiguous()

        B, N, _ = p.shape[:3]
        # idx = self.sample_fn(p, int(N * self.sample_ratio)).long()
        idx = self.sample_fn(p, self.sample_number).long()
        center_p = torch.gather(p, 1, idx.unsqueeze(-1).expand(-1, -1, 3))
        # query neighbors.
        _, fj = self.grouper(center_p, p, x.permute(0, 2, 1).contiguous()) # [B, N, 6] -> [B, 6, N] -> [B, 6, 1024, 32]

        # [B, 6, 1024] -> [B, channels, 1024, 1]
        fj = self.conv1(fj).max(dim=-1, keepdim=True)[0]

        return fj


if __name__ == '__main__':
    model = PointPatchEmbed(channels=256).cuda()
    input = torch.rand(4, 16384, 6).cuda()
    ou = model(input)
    import pdb;pdb.set_trace()