Spaces:
Runtime error
Runtime error
File size: 15,427 Bytes
068ab29 1eaa755 355b450 1eaa755 d25ae12 8b54513 d25ae12 8b54513 d25ae12 8b54513 d25ae12 8b54513 1a84a43 d25ae12 5bbfa70 8b54513 1a84a43 8b54513 d25ae12 8b54513 53238be 1a84a43 8a794c5 8b54513 1a84a43 8b54513 1a84a43 8b54513 1a84a43 8b54513 1a84a43 8b54513 225975e 1a84a43 8b54513 5813aac 5a055ba 5813aac 5a055ba 225975e ec63b44 5a055ba 8b54513 225975e 8b54513 225975e 085922d 047b007 a927763 085922d a927763 085922d 225975e b5c97db c0b5779 b5c97db 225975e b5c97db 159853d 1a84a43 159853d 1a84a43 159853d 8b54513 d25ae12 a66a8c1 1a84a43 a66a8c1 225975e 1a84a43 225975e 8b54513 1a84a43 8b54513 1a84a43 8b54513 8a794c5 1a84a43 8a794c5 1a84a43 8b54513 9b8e41b 8b54513 09f4959 8b54513 d25ae12 8b54513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import subprocess
msg = subprocess.check_output("cd model/lib/pointnet2 && python setup.py install", shell=True)
print(msg)
import sys
import os
import argparse
import multiprocessing as mp
import numpy as np
from typing import List, Optional
import torch
import torch.distributed as dist
from fairscale.nn.model_parallel import initialize as fs_init
import gradio as gr
from util.misc import setup_for_distributed
from util.misc import default_tensor_type
from model.meta import MetaModel
from data.conversation_lib import conv_templates, SeparatorStyle
from PIL import Image
import torchvision.transforms as transforms
from data.fintune_dataset import make_audio_features
from data import video_utils
from dataclasses import dataclass
from huggingface_hub import hf_hub_download
import plotly.graph_objects as go
from data.fintune_dataset import pc_norm
from functools import partial
import glob
T_random_resized_crop = transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(0.75, 1.3333), interpolation=3,
antialias=None), # 3 is bicubic
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
def load_audio(audio_path):
fbank = make_audio_features(audio_path, mel_bins=128)
fbank = fbank.transpose(0, 1)[None] #[1, 128, 1024]
return fbank
def load_video(video_path):
video_feats = video_utils.load_and_transform_video_data(video_path, video_path, clip_duration=1, clips_per_video=5)
return video_feats[:, :, 0]
def load_point(point_path):
point_feat = np.load(point_path)
point_feat = torch.tensor(point_feat)
point_feat = pc_norm(point_feat)
return point_feat
def load_fmri(fmri_path):
data = np.load(fmri_path)
data = data.mean(axis=0)
data = torch.tensor(data[None])
return data
def model_worker(
rank: int, args: argparse.Namespace, barrier: mp.Barrier,
request_queue: mp.Queue, response_queue: Optional[mp.Queue] = None,
) -> None:
"""
The worker function that manipulates the GPU to run the inference.
Exact n_gpu workers are started, with each one operating on a separate GPU.
Args:
rank (int): Distributed rank of the worker.
args (argparse.Namespace): All command line arguments.
barrier (multiprocessing.Barrier): A barrier used to delay the start
of Web UI to be after the start of the model.
"""
world_size = len(args.gpu_ids)
gpu_id = args.gpu_ids[rank]
dist.init_process_group(
backend="nccl", rank=rank, world_size=world_size,
init_method=f"tcp://{args.master_addr}:{args.master_port}",
)
print(f"| distributed init on worker {rank}/{world_size}. "
f"using gpu: {gpu_id}")
fs_init.initialize_model_parallel(world_size)
torch.cuda.set_device(gpu_id)
torch.manual_seed(1)
np.random.seed(1)
# set the print behavior.
setup_for_distributed(rank == 0)
target_dtype = {
"bf16": torch.bfloat16,
"fp16": torch.float16
}[args.dtype]
with default_tensor_type(dtype=target_dtype, device="cuda"):
model = MetaModel(args.llama_type, args.llama_config, tokenizer_path=args.tokenizer_path)
for ckpt_id in range(args.num_ckpts):
# ckpt_path = hf_hub_download(repo_id=args.pretrained_path, filename=args.ckpt_format.format(str(ckpt_id)))
ckpt_path = os.path.join(args.pretrained_path, args.ckpt_format.format(str(ckpt_id)))
print(f"Loading pretrained weights {ckpt_path}")
checkpoint = torch.load(ckpt_path, map_location='cpu')
msg = model.load_state_dict(checkpoint, strict=False)
# print("load result:\n", msg)
model.cuda()
model.eval()
print(f"Model = {str(model)}")
barrier.wait()
while True:
img_path, audio_path, video_path, point_path, fmri_path, chatbot, max_gen_len, temperature, top_p, modality = request_queue.get()
if 'image' in modality and img_path is not None:
image = Image.open(img_path).convert('RGB')
inputs = T_random_resized_crop(image)
elif 'video' in modality and video_path is not None:
inputs = load_video(video_path)
elif 'audio' in modality and audio_path is not None:
inputs = load_audio(audio_path)
elif 'point' in modality and point_path is not None:
inputs = load_point(point_path)
elif 'fmri' in modality and fmri_path is not None:
inputs = load_fmri(fmri_path)
else:
inputs = None
if inputs is not None:
inputs = inputs[None].cuda().to(target_dtype)
conv = conv_templates["v1"].copy()
for user, bot in chatbot:
conv.append_message(conv.roles[0], user)
conv.append_message(conv.roles[1], bot)
with torch.cuda.amp.autocast(dtype=target_dtype):
print(conv.get_prompt())
for stream_response in model.stream_generate(
conv.get_prompt(), inputs,
max_gen_len=max_gen_len, temperature=temperature, top_p=top_p,
modal = modality
):
conv_sep = (
conv.sep
if conv.sep_style == SeparatorStyle.SINGLE
else conv.sep2
)
end_pos = stream_response["text"].find(conv_sep)
if end_pos != -1:
stream_response["text"] = (
stream_response['text'][:end_pos].rstrip() + "\n"
)
stream_response["end_of_content"] = True
# keep a few characters if not end_of_content to avoid sending
# part of conv_sep before all of it is generated.
if not stream_response["end_of_content"]:
if len(stream_response["text"]) < len(conv_sep):
continue
stream_response["text"] = (
stream_response["text"][:-len(conv_sep)]
)
if response_queue is not None:
response_queue.put(stream_response)
if stream_response["end_of_content"]:
break
def gradio_worker(
request_queues: List[mp.Queue], response_queue: mp.Queue,
args: argparse.Namespace, barrier: mp.Barrier,
) -> None:
"""
The gradio worker is responsible for displaying the WebUI and relay the
requests to model workers. It should be launched only once.
Args:
request_queues (List[mp.Queue]): A list of request queues (one for
each model worker).
args (argparse.Namespace): All command line arguments.
barrier (multiprocessing.Barrier): A barrier used to delay the start
of Web UI to be after the start of the model.
"""
def show_user_input(msg, chatbot):
return "", chatbot + [[msg, None]]
def stream_model_output(img_path, audio_path, video_path, point_path, fmri_path, chatbot, max_gen_len, gen_t, top_p, modality):
for queue in request_queues:
queue.put((img_path, audio_path, video_path, point_path, fmri_path, chatbot, max_gen_len, gen_t, top_p, modality))
while True:
content_piece = response_queue.get()
chatbot[-1][1] = content_piece["text"]
yield chatbot
if content_piece["end_of_content"]:
break
def undo(chatbot):
if len(chatbot) > 0:
chatbot = chatbot[:-1]
return chatbot
def clear():
chatbot = []
msg = ""
return chatbot, msg
def show_point_cloud(file):
point = load_point(file).numpy()
fig = go.Figure(
data=[
go.Scatter3d(
x=point[:,0], y=point[:,1], z=point[:,2],
mode='markers',
marker=dict(
size=1.2,
color=['rgb({},{},{})'.format(r, g, b) for r,g,b in zip(point[:,3], point[:,4], point[:,5])]
))],
layout=dict(
scene=dict(
xaxis=dict(visible=False),
yaxis=dict(visible=False),
zaxis=dict(visible=False)
)),)
return fig
def change_modality(modal):
return modal
CSS ="""
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""
header="""
## OneLLM: One Framework to Align All Modalities with Language
[[Project Page](https://onellm.csuhan.com)] [[Paper](https://github.com/csuhan/OneLLM/blob/main/OneLLM_Arxiv.pdf)] [[Code](https://github.com/csuhan/OneLLM)]
"""
with gr.Blocks(css=CSS, theme=gr.themes.Base()) as demo:
gr.Markdown(header)
with gr.Row(equal_height=True):
modality = gr.Textbox(value='image', visible=False)
with gr.Column(scale=1):
with gr.Tab('Image') as img_tab:
img_path = gr.Image(label='Image Input', type='filepath')
gr.Examples(
examples=[
"examples/new_york.jpg",
"examples/food_menu.png",
],
inputs=[img_path],
)
with gr.Tab('Video') as video_tab:
video_path = gr.Video(label='Video Input')
gr.Examples(
examples=[
"examples/flower.mp4",
"examples/star_kun.mp4",
],
inputs=[video_path],
)
with gr.Tab('Audio') as audio_tab:
audio_path = gr.Audio(label='Audio Input', type='filepath', sources=['upload'])
gr.Examples(
examples=[
"examples/bell_ring.wav",
"examples/bird_audio.wav",
],
inputs=[audio_path],
)
with gr.Tab('Point Cloud') as point_tab:
point_path = gr.File(label='Point Cloud Input', elem_id="pointpath", elem_classes="")
point_vis = gr.Plot()
btn = gr.Button(value="Show Point Cloud")
btn.click(show_point_cloud, point_path, point_vis)
gr.Examples(
examples=glob.glob("examples/point/*.npy"),
inputs=[point_path],
examples_per_page=5,
)
with gr.Tab('IMU') as imu_tab:
gr.Markdown('Coming soon🤗')
with gr.Tab('fMRI') as fmri_tab:
fmri_path = gr.File(label='fMRI Input', elem_id="fmripath", elem_classes="")
fmri_image_path = gr.Image(interactive=False)
gr.Examples(
examples=[
[file.replace('.jpg', '.npy'), file]
for file in glob.glob("examples/fmri/*.jpg")
],
inputs=[fmri_path, fmri_image_path],
examples_per_page=3,
)
with gr.Tab('Depth Map') as depth_tab:
gr.Markdown('Coming soon🤗')
with gr.Tab('Normal Map') as normal_tab:
gr.Markdown('Coming soon🤗')
with gr.Column(scale=2):
chatbot = gr.Chatbot(elem_id="chatbot")
msg = gr.Textbox()
with gr.Row():
submit_button = gr.Button("Submit", variant="primary")
undo_button = gr.Button("Undo")
clear_button = gr.ClearButton([chatbot, msg, img_path, audio_path, video_path, point_path, fmri_path, point_vis])
with gr.Row():
max_gen_len = gr.Slider(
minimum=1, maximum=args.model_max_seq_len // 2,
value=args.model_max_seq_len // 2, interactive=True,
label="Single-turn max response length",
)
gen_t = gr.Slider(
minimum=0, maximum=1, value=0.1, interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0, maximum=1, value=0.75, interactive=True,
label="Top-p",
)
img_tab.select(partial(change_modality, 'image'), [], [modality])
video_tab.select(partial(change_modality, 'video'), [], [modality])
audio_tab.select(partial(change_modality, 'audio'), [], [modality])
point_tab.select(partial(change_modality, 'point'), [], [modality])
fmri_tab.select(partial(change_modality, 'fmri'), [], [modality])
msg.submit(
show_user_input, [msg, chatbot], [msg, chatbot],
).then(
stream_model_output, [img_path, audio_path, video_path, point_path, fmri_path, chatbot, max_gen_len, gen_t, top_p, modality], chatbot,
)
submit_button.click(
show_user_input, [msg, chatbot], [msg, chatbot],
).then(
stream_model_output, [img_path, audio_path, video_path, point_path, fmri_path, chatbot, max_gen_len, gen_t, top_p, modality], chatbot,
)
undo_button.click(undo, chatbot, chatbot)
# img_path.change(clear, [], [chatbot, msg])
barrier.wait()
demo.queue(api_open=True).launch(share=True, max_threads=1)
@dataclass
class DemoConfig:
gpu_ids = [0]
tokenizer_path = "config/llama2/tokenizer.model"
llama_type = "onellm"
llama_config = "config/llama2/7B.json"
model_max_seq_len = 2048
# pretrained_path = "weights/7B_2048/consolidated.00-of-01.pth"
# pretrained_path = hf_hub_download(repo_id="csuhan/OneLLM-7B", filename="consolidated.00-of-01.pth")
# pretrained_path = "csuhan/OneLLM-7B-hf"
pretrained_path = "/home/pgao/jiaming/weights/7B_v20_splits/"
ckpt_format = "consolidated.00-of-01.s{}.pth"
num_ckpts = 10
master_port = 23863
master_addr = "127.0.0.1"
dtype = "fp16"
if __name__ == "__main__":
args = DemoConfig()
# using the default "fork" method messes up some imported libs (e.g.,
# pandas)
# mp.set_start_method("spawn")
# setup the queues and start the model workers
request_queues = []
response_queue = mp.Queue()
worker_processes = []
barrier = mp.Barrier(len(args.gpu_ids) + 1)
for rank, gpu_id in enumerate(args.gpu_ids):
request_queue = mp.Queue()
rank_response_queue = response_queue if rank == 0 else None
process = mp.Process(
target=model_worker,
args=(rank, args, barrier, request_queue, rank_response_queue),
)
process.start()
worker_processes.append(process)
request_queues.append(request_queue)
gradio_worker(request_queues, response_queue, args, barrier)
|