File size: 17,284 Bytes
8b54513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import warnings

import torch
import yaml
from torch.utils.data import Dataset
from PIL import Image
import json
from model.tokenizer import Tokenizer
import os
import torchvision.transforms as transforms
import random
import torchvision.transforms.functional as F
import torchaudio
from . import conversation_lib

import numpy as np
from . import video_utils
from .imu_utils import get_imu_frames


IGNORE_INDEX = -100

DEFAULT_IMAGE_TOKEN = "<image>"
try:
    from torchvision.transforms import InterpolationMode

    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    BICUBIC = Image.BICUBIC

T_random_resized_crop = transforms.Compose([
    transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(0.75, 1.3333), interpolation=BICUBIC,
                                 antialias=None),  # 3 is bicubic
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])


# image transform
transform_img_train = transforms.Compose([
    transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(
        0.75, 1.3333), interpolation=3, antialias=None),  # 3 is bicubic
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])


class PairRandomResizedCrop(transforms.RandomResizedCrop):
    def forward(self, imgs):
        i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio)
        return [F.resized_crop(img, i, j, h, w, self.size, self.interpolation, antialias=self.antialias) for img in imgs]


class PairToTensor(transforms.ToTensor):
    def __call__(self, pics):
        return [F.to_tensor(pic) for pic in pics]


class PairNormalize(transforms.Normalize):
    def forward(self, tensors):
        return [F.normalize(tensor, self.mean, self.std, self.inplace) for tensor in tensors]


transform_pairimg_train = transforms.Compose([
    PairRandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(
        0.75, 1.3333), interpolation=3, antialias=None),  # 3 is bicubic
    PairToTensor(),
    PairNormalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])


def pc_norm(pc):
    """ pc: NxC, return NxC """
    xyz = pc[:, :3]
    other_feature = pc[:, 3:]

    centroid = torch.mean(xyz, dim=0)
    xyz = xyz - centroid
    m = torch.max(torch.sqrt(torch.sum(xyz ** 2, dim=1)))
    xyz = xyz / m

    pc = torch.cat((xyz, other_feature), dim=1)
    return pc


def make_audio_features(wav_name, mel_bins=128, target_length=1024, aug=False):
    waveform, sr = torchaudio.load(wav_name)
    # assert sr == 16000, 'input audio sampling rate must be 16kHz'
    if sr != 16000:
        trans = torchaudio.transforms.Resample(sr, 16000)
        waveform = trans(waveform)

    waveform = waveform - waveform.mean()

    fbank = torchaudio.compliance.kaldi.fbank(
        waveform, htk_compat=True, sample_frequency=16000, use_energy=False,
        window_type='hanning', num_mel_bins=mel_bins, dither=0.0, frame_shift=10)

    n_frames = fbank.shape[0]

    p = target_length - n_frames
    if p > 0:
        m = torch.nn.ZeroPad2d((0, 0, 0, p))
        fbank = m(fbank)
    elif p < 0:
        fbank = fbank[0:target_length, :]

    if aug:
        freqm = torchaudio.transforms.FrequencyMasking(48)
        timem = torchaudio.transforms.TimeMasking(192)
        fbank = torch.transpose(fbank, 0, 1)
        fbank = fbank.unsqueeze(0)
        fbank = freqm(fbank)
        fbank = timem(fbank)
        fbank = fbank.squeeze(0)
        fbank = torch.transpose(fbank, 0, 1)

    fbank = (fbank - (-4.2677393)) / (4.5689974 * 2)
    return fbank


class ConversationGenerator:
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        self.header = f"{conversation_lib.default_conversation.system}\n\n"
        self._probe_tokenizer_style()

    def _probe_tokenizer_style(self):
        """
        Given a sentence, e.g. "My darling", some tokenizers will make the space a seperate token,
        while some others will merge the space into the next word, forming a token representing " darling".
        Knowing which style the tokenizer takes is necessary for correct ground-truth label masking.

        """
        probe = "Probe am I"
        sentence1 = self.tokenizer.encode(conversation_lib.default_conversation.roles[1] + ": " + probe,
                                          bos=False, eos=False)
        sentence2 = self.tokenizer.encode(probe,
                                          bos=False, eos=False)
        if sentence1[-len(sentence2):] == sentence2:
            self.space_before_to_predict = False
        else:
            sentence3 = self.tokenizer.encode(" " + probe,
                                              bos=False, eos=False)
            assert sentence1[-len(sentence3):] == sentence3
            self.space_before_to_predict = True

    def add_speaker_and_signal(self, source, get_conversation=True):
        """Add speaker and start/end signal on each round."""
        BEGIN_SIGNAL = "### "
        END_SIGNAL = "\n"
        conversation = self.header

        to_predict_list = []

        for sentence in source:
            from_str = sentence["from"]
            if from_str.lower() in ["human"]:
                from_str = conversation_lib.default_conversation.roles[0]
            elif from_str.lower() in ["gpt", "assistant"]:
                from_str = conversation_lib.default_conversation.roles[1]
            else:
                raise ValueError(f"unknown dialog role: {from_str.lower()}")

            value = sentence["value"]
            if DEFAULT_IMAGE_TOKEN in value:
                value = value.replace(DEFAULT_IMAGE_TOKEN, '').strip()

            sentence_value = BEGIN_SIGNAL + from_str + ": " + value + END_SIGNAL

            if from_str == conversation_lib.default_conversation.roles[1]:
                to_predict_value = value + END_SIGNAL + "###"
                if self.space_before_to_predict:
                    to_predict_value = " " + to_predict_value
                to_predict_list.append(to_predict_value)

            if get_conversation:
                conversation = conversation + sentence_value

        conversation = conversation + BEGIN_SIGNAL
        return conversation, to_predict_list


DATASETS = dict(
    image=[
        dict(path="datasets/InstructionTuning/image/llava_v1_5_mix665k_image.json", type='image'),
        dict(path='datasets/InstructionTuning/image/cococap_train.json', type='image'),
        dict(path="datasets/InstructionTuning/image/llava_v1_5_mix665k_text.json", type='text'),
    ],
    audio=[
        dict(path="datasets/InstructionTuning/audio/audiocap_train.json", type='audio'),
        dict(path="datasets/InstructionTuning/audio/audiocap_val.json", type='audio'),
        dict(path="datasets/InstructionTuning/audio/audio_conversation.json", type='audio'),
    ],
    video=[
        dict(path="datasets/InstructionTuning/video/msrvtt_cap_trainval.json", type='video'),
        dict(path="datasets/InstructionTuning/video/msrvtt_cap_test.json", type='video'),
        dict(path="datasets/InstructionTuning/video/msrvtt_vqa_train.json", type='video'),
        dict(path="datasets/InstructionTuning/video/msrvtt_vqa_val.json", type='video'),
        dict(path="datasets/InstructionTuning/video/msrvtt_vqa_test.json", type='video'),
        dict(path="datasets/InstructionTuning/video/video_complex_reasoning_10k.json", type='video'),
        dict(path="datasets/InstructionTuning/video/video_conversation_10k.json", type='video'),
        dict(path="datasets/InstructionTuning/video/video_detail_10k.json", type='video'),
    ],
    point=[
        dict(path="datasets/InstructionTuning/point/pointllm_70k_formated.json", type='point'),
    ],
    rgbd=[
        dict(path="datasets/InstructionTuning/depth_normal/llava_instruct_50k_depth.json", type='rgbd'),
    ],
    rgbn=[
        dict(path="datasets/InstructionTuning/depth_normal/llava_instruct_50k_normal.json", type='rgbn'),
    ],
    imu=[
        dict(path="datasets/InstructionTuning/imu/imu_fixed_50k.json", type='imu'),
    ],
    fmri=[
        dict(path="datasets/InstructionTuning/fmri/fmri_fixed.json", type='fmri'),
    ],
)
IMU_PATH = "/mnt/petrelfs/share_data/hanjiaming/ego4d/v2/processed_imu/"


class FinetuneDialogDataset(Dataset):
    def __init__(self, dataset=['image'], transform=T_random_resized_crop, max_words=2048, image_words=30, tokenizer_path=None):
        if isinstance(dataset, str):
            dataset = [dataset]

        self.dataset = dataset

        group_ann = {}
        for d in dataset:
            for meta in DATASETS[d]:
                meta_path, meta_type = meta['path'], meta['type']
                meta_ext = os.path.splitext(meta_path)[-1]
                if meta_ext == ".json":
                    with open(meta_path) as f:
                        meta_l = json.load(f)
                        # add data_type
                        # this is a temp solution
                        new_meta_l = []
                        for l in meta_l:
                            l['data_type'] = meta_type
                            new_meta_l.append(l)
                        meta_l = new_meta_l
                elif meta_ext == ".jsonl":
                    meta_l = []
                    with open(meta_path) as f:
                        for i, line in enumerate(f):
                            try:
                                meta_l.append(json.loads(line))
                            except json.decoder.JSONDecodeError as e:
                                print(
                                    f"Error decoding the following jsonl line ({i}):\n{line.rstrip()}", force=True)
                                raise e
                else:
                    raise NotImplementedError(
                        f"Unknown meta file extension: \"{meta_ext}\". "
                        f"Currently, .json, .jsonl are supported. "
                        "If you are using a supported format, please set the file extension so that the proper parsing "
                        "routine can be called."
                    )
                if meta_type not in group_ann:
                    group_ann[meta_type] = []
                print(f"{meta_path}, type {meta_type}: len {len(meta_l)}")
                group_ann[meta_type] += meta_l

        # sort group_ann for higher efficiency (items in one global batch with similar length)
        for meta_type, meta_l in group_ann.items():
            meta_l.sort(key=lambda data_item: sum(
                [len(_['value']) for _ in data_item['conversations']]))

        self.group_ann = group_ann
        self.ann = sum(list(self.group_ann.values()), start=[])

        self.group_indices = {}
        start_pos = 0
        for meta_type, meta_l in self.group_ann.items():
            self.group_indices[meta_type] = list(
                range(start_pos, start_pos + len(meta_l)))
            start_pos = start_pos + len(meta_l)

        print(f"total length: {len(self)}")
        self.transform = transform
        print(f"transform:\n{self.transform}")
        self.max_words = max_words
        self.image_words = image_words
        self.tokenizer = Tokenizer(model_path=tokenizer_path)
        self.conversation_generator = ConversationGenerator(self.tokenizer)

        self.load_funcs = dict(
            image=self.load_image,
            audio=self.load_audio,
            video=self.load_video,
            point=self.load_point,
            rgbd=self.load_rgbx,
            rgbn=self.load_rgbx,
            imu=self.load_imu,
            fmri=self.load_fmri
        )

    def __len__(self):
        return len(self.ann)

    def load_image(self, data):
        filename = data['image']
        image = Image.open(filename).convert('RGB')
        image = self.transform(image)
        return image

    def load_audio(self, data):
        audio_path = data['image']
        fbank = make_audio_features(audio_path, mel_bins=128)
        fbank = fbank.transpose(0, 1)[None]  # [1, 128, 1024]
        return fbank

    def load_video(self, data):
        video_path = data['image']
        video_feats = video_utils.load_and_transform_video_data(
            video_path, video_path, clip_duration=1, clips_per_video=5)
        return video_feats[:, :, 0]

    def load_point(self, data):
        point_path = data['image']
        point_feat = torch.load(point_path, map_location='cpu')
        point_feat = point_feat.transpose(0, 1)
        return point_feat

    def load_rgbx(self, data):
        image_path = data['image']
        x_image_path = data['depth_image'] if 'depth_image' in data else data['normal_image']
        image = Image.open(image_path).convert('RGB')
        x_image = Image.open(x_image_path).convert('RGB')
        x_image = x_image.resize(image.size[-2:])

        image, x_image = transform_pairimg_train([image, x_image])
        # [2, 3, H, W]
        image = torch.stack([image, x_image], dim=0)
        return image

    def load_fmri(self, data):
        fmri_path = data['image']
        data = np.load(fmri_path)
        data = data.mean(axis=0)
        data = torch.tensor(data[None])
        return data

    def load_imu(self, data_dict):
        uid = data_dict["video_uid"]
        w_s = data_dict["window_start"]
        w_e = data_dict["window_end"]

        imu_data = get_imu_frames(
            IMU_PATH, uid,
            video_start_sec=w_s,
            video_end_sec=w_e,
        )
        if imu_data is None:
            raise ValueError
        return imu_data['signal']

    def __getitem__(self, index, expect_type=None):
        if expect_type is None:
            data_item = self.ann[index]
        else:
            # in case we want get data from specific data_type
            data_item = self.group_ann[expect_type][index]

        data_type = data_item['data_type']
        if data_type != 'text':
            if data_type in self.load_funcs:
                try:
                    image = self.load_funcs[data_type](data_item)
                    if image == None:
                        raise ValueError('Data is None')
                except:
                    print('Error', data_item)
                    rand_idx = random.randint(
                        0, len(self.group_ann[data_type]))
                    return self.__getitem__(rand_idx, expect_type=data_type)
            else:
                raise ValueError(f'Does not support {data_type}')
        else:
            image = None
            # warnings.warn("pure black image for examples without image")
            # image = torch.zeros(3, 224, 224)

        source = data_item["conversations"]
        conversation, to_predict_values = self.conversation_generator.add_speaker_and_signal(
            source)
        if len(to_predict_values) == 0:
            warnings.warn(
                f"see dialog data with nothing to predict, data: {data_item}")
            return self[index-1]

        tokenzed_conversation = self.tokenizer.encode(
            conversation, bos=True, eos=True)
        labels = [IGNORE_INDEX for _ in tokenzed_conversation]

        check_pos = 0
        for value in to_predict_values:
            tokenized_value = self.tokenizer.encode(
                value, bos=False, eos=False)
            value_pos = find_sublist(
                tokenzed_conversation[check_pos:], tokenized_value) + check_pos
            if value_pos == -1:
                print(
                    "a sentence mismatches the corresponding piece in the conversation")
                return self[index-1]
            labels[value_pos:value_pos+len(tokenized_value)] = tokenized_value
            assert labels[value_pos:value_pos+len(
                tokenized_value)] == tokenzed_conversation[value_pos:value_pos+len(tokenized_value)]
            check_pos = value_pos+len(tokenized_value)

        input2 = torch.tensor(tokenzed_conversation, dtype=torch.int64)
        labels = torch.tensor(labels, dtype=torch.int64)

        if image is not None:
            max_words = self.max_words - self.image_words
        else:
            max_words = self.max_words
        padding = max_words - input2.shape[0]
        if padding > 0:
            input2 = torch.cat(
                (input2, torch.zeros(padding, dtype=torch.int64) - 1))
            labels = torch.cat(
                (labels, torch.zeros(padding, dtype=torch.int64) - 1))
        elif padding < 0:
            input2 = input2[:max_words]
            labels = labels[:max_words]

        input2_mask = input2.ge(0)
        label_mask = labels.ge(0)
        input2[~input2_mask] = 0
        labels[~label_mask] = 0
        input2_mask = input2_mask.float()
        label_mask = label_mask.float()
        if image is None:
            return input2, labels, data_item['data_type']
        else:
            return input2, labels, image, data_item['data_type']

    def groups(self):
        return list(self.group_indices.values())


def find_sublist(a: list, b: list):
    len_a, len_b = len(a), len(b)
    for i in range(len_a - len_b + 1):
        if a[i:i+len_b] == b:
            return i
    return -1