Spaces:
Runtime error
Runtime error
File size: 17,284 Bytes
8b54513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import warnings
import torch
import yaml
from torch.utils.data import Dataset
from PIL import Image
import json
from model.tokenizer import Tokenizer
import os
import torchvision.transforms as transforms
import random
import torchvision.transforms.functional as F
import torchaudio
from . import conversation_lib
import numpy as np
from . import video_utils
from .imu_utils import get_imu_frames
IGNORE_INDEX = -100
DEFAULT_IMAGE_TOKEN = "<image>"
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
T_random_resized_crop = transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(0.75, 1.3333), interpolation=BICUBIC,
antialias=None), # 3 is bicubic
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
# image transform
transform_img_train = transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(
0.75, 1.3333), interpolation=3, antialias=None), # 3 is bicubic
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
class PairRandomResizedCrop(transforms.RandomResizedCrop):
def forward(self, imgs):
i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio)
return [F.resized_crop(img, i, j, h, w, self.size, self.interpolation, antialias=self.antialias) for img in imgs]
class PairToTensor(transforms.ToTensor):
def __call__(self, pics):
return [F.to_tensor(pic) for pic in pics]
class PairNormalize(transforms.Normalize):
def forward(self, tensors):
return [F.normalize(tensor, self.mean, self.std, self.inplace) for tensor in tensors]
transform_pairimg_train = transforms.Compose([
PairRandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(
0.75, 1.3333), interpolation=3, antialias=None), # 3 is bicubic
PairToTensor(),
PairNormalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
def pc_norm(pc):
""" pc: NxC, return NxC """
xyz = pc[:, :3]
other_feature = pc[:, 3:]
centroid = torch.mean(xyz, dim=0)
xyz = xyz - centroid
m = torch.max(torch.sqrt(torch.sum(xyz ** 2, dim=1)))
xyz = xyz / m
pc = torch.cat((xyz, other_feature), dim=1)
return pc
def make_audio_features(wav_name, mel_bins=128, target_length=1024, aug=False):
waveform, sr = torchaudio.load(wav_name)
# assert sr == 16000, 'input audio sampling rate must be 16kHz'
if sr != 16000:
trans = torchaudio.transforms.Resample(sr, 16000)
waveform = trans(waveform)
waveform = waveform - waveform.mean()
fbank = torchaudio.compliance.kaldi.fbank(
waveform, htk_compat=True, sample_frequency=16000, use_energy=False,
window_type='hanning', num_mel_bins=mel_bins, dither=0.0, frame_shift=10)
n_frames = fbank.shape[0]
p = target_length - n_frames
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
if aug:
freqm = torchaudio.transforms.FrequencyMasking(48)
timem = torchaudio.transforms.TimeMasking(192)
fbank = torch.transpose(fbank, 0, 1)
fbank = fbank.unsqueeze(0)
fbank = freqm(fbank)
fbank = timem(fbank)
fbank = fbank.squeeze(0)
fbank = torch.transpose(fbank, 0, 1)
fbank = (fbank - (-4.2677393)) / (4.5689974 * 2)
return fbank
class ConversationGenerator:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.header = f"{conversation_lib.default_conversation.system}\n\n"
self._probe_tokenizer_style()
def _probe_tokenizer_style(self):
"""
Given a sentence, e.g. "My darling", some tokenizers will make the space a seperate token,
while some others will merge the space into the next word, forming a token representing " darling".
Knowing which style the tokenizer takes is necessary for correct ground-truth label masking.
"""
probe = "Probe am I"
sentence1 = self.tokenizer.encode(conversation_lib.default_conversation.roles[1] + ": " + probe,
bos=False, eos=False)
sentence2 = self.tokenizer.encode(probe,
bos=False, eos=False)
if sentence1[-len(sentence2):] == sentence2:
self.space_before_to_predict = False
else:
sentence3 = self.tokenizer.encode(" " + probe,
bos=False, eos=False)
assert sentence1[-len(sentence3):] == sentence3
self.space_before_to_predict = True
def add_speaker_and_signal(self, source, get_conversation=True):
"""Add speaker and start/end signal on each round."""
BEGIN_SIGNAL = "### "
END_SIGNAL = "\n"
conversation = self.header
to_predict_list = []
for sentence in source:
from_str = sentence["from"]
if from_str.lower() in ["human"]:
from_str = conversation_lib.default_conversation.roles[0]
elif from_str.lower() in ["gpt", "assistant"]:
from_str = conversation_lib.default_conversation.roles[1]
else:
raise ValueError(f"unknown dialog role: {from_str.lower()}")
value = sentence["value"]
if DEFAULT_IMAGE_TOKEN in value:
value = value.replace(DEFAULT_IMAGE_TOKEN, '').strip()
sentence_value = BEGIN_SIGNAL + from_str + ": " + value + END_SIGNAL
if from_str == conversation_lib.default_conversation.roles[1]:
to_predict_value = value + END_SIGNAL + "###"
if self.space_before_to_predict:
to_predict_value = " " + to_predict_value
to_predict_list.append(to_predict_value)
if get_conversation:
conversation = conversation + sentence_value
conversation = conversation + BEGIN_SIGNAL
return conversation, to_predict_list
DATASETS = dict(
image=[
dict(path="datasets/InstructionTuning/image/llava_v1_5_mix665k_image.json", type='image'),
dict(path='datasets/InstructionTuning/image/cococap_train.json', type='image'),
dict(path="datasets/InstructionTuning/image/llava_v1_5_mix665k_text.json", type='text'),
],
audio=[
dict(path="datasets/InstructionTuning/audio/audiocap_train.json", type='audio'),
dict(path="datasets/InstructionTuning/audio/audiocap_val.json", type='audio'),
dict(path="datasets/InstructionTuning/audio/audio_conversation.json", type='audio'),
],
video=[
dict(path="datasets/InstructionTuning/video/msrvtt_cap_trainval.json", type='video'),
dict(path="datasets/InstructionTuning/video/msrvtt_cap_test.json", type='video'),
dict(path="datasets/InstructionTuning/video/msrvtt_vqa_train.json", type='video'),
dict(path="datasets/InstructionTuning/video/msrvtt_vqa_val.json", type='video'),
dict(path="datasets/InstructionTuning/video/msrvtt_vqa_test.json", type='video'),
dict(path="datasets/InstructionTuning/video/video_complex_reasoning_10k.json", type='video'),
dict(path="datasets/InstructionTuning/video/video_conversation_10k.json", type='video'),
dict(path="datasets/InstructionTuning/video/video_detail_10k.json", type='video'),
],
point=[
dict(path="datasets/InstructionTuning/point/pointllm_70k_formated.json", type='point'),
],
rgbd=[
dict(path="datasets/InstructionTuning/depth_normal/llava_instruct_50k_depth.json", type='rgbd'),
],
rgbn=[
dict(path="datasets/InstructionTuning/depth_normal/llava_instruct_50k_normal.json", type='rgbn'),
],
imu=[
dict(path="datasets/InstructionTuning/imu/imu_fixed_50k.json", type='imu'),
],
fmri=[
dict(path="datasets/InstructionTuning/fmri/fmri_fixed.json", type='fmri'),
],
)
IMU_PATH = "/mnt/petrelfs/share_data/hanjiaming/ego4d/v2/processed_imu/"
class FinetuneDialogDataset(Dataset):
def __init__(self, dataset=['image'], transform=T_random_resized_crop, max_words=2048, image_words=30, tokenizer_path=None):
if isinstance(dataset, str):
dataset = [dataset]
self.dataset = dataset
group_ann = {}
for d in dataset:
for meta in DATASETS[d]:
meta_path, meta_type = meta['path'], meta['type']
meta_ext = os.path.splitext(meta_path)[-1]
if meta_ext == ".json":
with open(meta_path) as f:
meta_l = json.load(f)
# add data_type
# this is a temp solution
new_meta_l = []
for l in meta_l:
l['data_type'] = meta_type
new_meta_l.append(l)
meta_l = new_meta_l
elif meta_ext == ".jsonl":
meta_l = []
with open(meta_path) as f:
for i, line in enumerate(f):
try:
meta_l.append(json.loads(line))
except json.decoder.JSONDecodeError as e:
print(
f"Error decoding the following jsonl line ({i}):\n{line.rstrip()}", force=True)
raise e
else:
raise NotImplementedError(
f"Unknown meta file extension: \"{meta_ext}\". "
f"Currently, .json, .jsonl are supported. "
"If you are using a supported format, please set the file extension so that the proper parsing "
"routine can be called."
)
if meta_type not in group_ann:
group_ann[meta_type] = []
print(f"{meta_path}, type {meta_type}: len {len(meta_l)}")
group_ann[meta_type] += meta_l
# sort group_ann for higher efficiency (items in one global batch with similar length)
for meta_type, meta_l in group_ann.items():
meta_l.sort(key=lambda data_item: sum(
[len(_['value']) for _ in data_item['conversations']]))
self.group_ann = group_ann
self.ann = sum(list(self.group_ann.values()), start=[])
self.group_indices = {}
start_pos = 0
for meta_type, meta_l in self.group_ann.items():
self.group_indices[meta_type] = list(
range(start_pos, start_pos + len(meta_l)))
start_pos = start_pos + len(meta_l)
print(f"total length: {len(self)}")
self.transform = transform
print(f"transform:\n{self.transform}")
self.max_words = max_words
self.image_words = image_words
self.tokenizer = Tokenizer(model_path=tokenizer_path)
self.conversation_generator = ConversationGenerator(self.tokenizer)
self.load_funcs = dict(
image=self.load_image,
audio=self.load_audio,
video=self.load_video,
point=self.load_point,
rgbd=self.load_rgbx,
rgbn=self.load_rgbx,
imu=self.load_imu,
fmri=self.load_fmri
)
def __len__(self):
return len(self.ann)
def load_image(self, data):
filename = data['image']
image = Image.open(filename).convert('RGB')
image = self.transform(image)
return image
def load_audio(self, data):
audio_path = data['image']
fbank = make_audio_features(audio_path, mel_bins=128)
fbank = fbank.transpose(0, 1)[None] # [1, 128, 1024]
return fbank
def load_video(self, data):
video_path = data['image']
video_feats = video_utils.load_and_transform_video_data(
video_path, video_path, clip_duration=1, clips_per_video=5)
return video_feats[:, :, 0]
def load_point(self, data):
point_path = data['image']
point_feat = torch.load(point_path, map_location='cpu')
point_feat = point_feat.transpose(0, 1)
return point_feat
def load_rgbx(self, data):
image_path = data['image']
x_image_path = data['depth_image'] if 'depth_image' in data else data['normal_image']
image = Image.open(image_path).convert('RGB')
x_image = Image.open(x_image_path).convert('RGB')
x_image = x_image.resize(image.size[-2:])
image, x_image = transform_pairimg_train([image, x_image])
# [2, 3, H, W]
image = torch.stack([image, x_image], dim=0)
return image
def load_fmri(self, data):
fmri_path = data['image']
data = np.load(fmri_path)
data = data.mean(axis=0)
data = torch.tensor(data[None])
return data
def load_imu(self, data_dict):
uid = data_dict["video_uid"]
w_s = data_dict["window_start"]
w_e = data_dict["window_end"]
imu_data = get_imu_frames(
IMU_PATH, uid,
video_start_sec=w_s,
video_end_sec=w_e,
)
if imu_data is None:
raise ValueError
return imu_data['signal']
def __getitem__(self, index, expect_type=None):
if expect_type is None:
data_item = self.ann[index]
else:
# in case we want get data from specific data_type
data_item = self.group_ann[expect_type][index]
data_type = data_item['data_type']
if data_type != 'text':
if data_type in self.load_funcs:
try:
image = self.load_funcs[data_type](data_item)
if image == None:
raise ValueError('Data is None')
except:
print('Error', data_item)
rand_idx = random.randint(
0, len(self.group_ann[data_type]))
return self.__getitem__(rand_idx, expect_type=data_type)
else:
raise ValueError(f'Does not support {data_type}')
else:
image = None
# warnings.warn("pure black image for examples without image")
# image = torch.zeros(3, 224, 224)
source = data_item["conversations"]
conversation, to_predict_values = self.conversation_generator.add_speaker_and_signal(
source)
if len(to_predict_values) == 0:
warnings.warn(
f"see dialog data with nothing to predict, data: {data_item}")
return self[index-1]
tokenzed_conversation = self.tokenizer.encode(
conversation, bos=True, eos=True)
labels = [IGNORE_INDEX for _ in tokenzed_conversation]
check_pos = 0
for value in to_predict_values:
tokenized_value = self.tokenizer.encode(
value, bos=False, eos=False)
value_pos = find_sublist(
tokenzed_conversation[check_pos:], tokenized_value) + check_pos
if value_pos == -1:
print(
"a sentence mismatches the corresponding piece in the conversation")
return self[index-1]
labels[value_pos:value_pos+len(tokenized_value)] = tokenized_value
assert labels[value_pos:value_pos+len(
tokenized_value)] == tokenzed_conversation[value_pos:value_pos+len(tokenized_value)]
check_pos = value_pos+len(tokenized_value)
input2 = torch.tensor(tokenzed_conversation, dtype=torch.int64)
labels = torch.tensor(labels, dtype=torch.int64)
if image is not None:
max_words = self.max_words - self.image_words
else:
max_words = self.max_words
padding = max_words - input2.shape[0]
if padding > 0:
input2 = torch.cat(
(input2, torch.zeros(padding, dtype=torch.int64) - 1))
labels = torch.cat(
(labels, torch.zeros(padding, dtype=torch.int64) - 1))
elif padding < 0:
input2 = input2[:max_words]
labels = labels[:max_words]
input2_mask = input2.ge(0)
label_mask = labels.ge(0)
input2[~input2_mask] = 0
labels[~label_mask] = 0
input2_mask = input2_mask.float()
label_mask = label_mask.float()
if image is None:
return input2, labels, data_item['data_type']
else:
return input2, labels, image, data_item['data_type']
def groups(self):
return list(self.group_indices.values())
def find_sublist(a: list, b: list):
len_a, len_b = len(a), len(b)
for i in range(len_a - len_b + 1):
if a[i:i+len_b] == b:
return i
return -1
|