Spaces:
Runtime error
Runtime error
File size: 19,204 Bytes
8b54513 1a84a43 8b54513 1a84a43 8b54513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Optional, Tuple
from dataclasses import dataclass
import math
import functools
import copy
import torch
from torch import nn
import torch.nn.functional as F
import fairscale.nn.model_parallel.initialize as fs_init
from fairscale.nn.model_parallel.layers import (
ParallelEmbedding,
RowParallelLinear,
ColumnParallelLinear,
)
from ..components import RMSNorm
from flash_attn import flash_attn_func
import open_clip
default_linear_init = nn.init.xavier_uniform_
@dataclass
class ModelArgs:
dim: int = 512
n_layers: int = 8
n_heads: int = 8
vocab_size: int = -1 # defined later by tokenizer
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
norm_eps: float = 1e-5
max_batch_size: int = 32
max_seq_len: int = 2048
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)
[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim -
1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size()
self.head_dim = args.dim // args.n_heads
self.wq = ColumnParallelLinear(
args.dim,
args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=default_linear_init,
)
self.wk = ColumnParallelLinear(
args.dim,
args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=default_linear_init,
)
self.wv = ColumnParallelLinear(
args.dim,
args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=default_linear_init,
)
self.wo = RowParallelLinear(
args.n_heads * self.head_dim,
args.dim,
bias=False,
input_is_parallel=True,
init_method=default_linear_init,
)
self.flash = True
self.k_cache, self.v_cache = None, None
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], prompt=None):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
if freqs_cis is not None:
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
if self.k_cache is None or self.v_cache is None:
keys, values = xk, xv
else:
self.k_cache = self.k_cache.to(xk)
self.v_cache = self.v_cache.to(xv)
self.k_cache[:bsz, start_pos: start_pos + seqlen, :, :] = xk
self.v_cache[:bsz, start_pos: start_pos + seqlen, :, :] = xv
keys = self.k_cache[:bsz, :start_pos + seqlen]
values = self.v_cache[:bsz, :start_pos + seqlen]
output = flash_attn_func(
xq, keys, values, dropout_p=0.0, causal=mask is not None)
output = output.contiguous().view(bsz, seqlen, -1)
return self.wo(output)
def allocate_kv_cache(self, max_batch_size: int, max_seq_len: int) -> None:
kv_cache_shape = (max_batch_size, max_seq_len,
self.n_local_heads, self.head_dim)
if self.k_cache is None or self.k_cache.size() != kv_cache_shape:
self.k_cache = torch.empty(kv_cache_shape)
if self.v_cache is None or self.v_cache.size() != kv_cache_shape:
self.v_cache = torch.empty(kv_cache_shape)
def destroy_kv_cache(self) -> None:
self.k_cache, self.v_cache = None, None
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * \
((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = ColumnParallelLinear(
dim, hidden_dim, bias=False, gather_output=False, init_method=default_linear_init,
)
self.w2 = RowParallelLinear(
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=default_linear_init
)
self.w3 = ColumnParallelLinear(
dim, hidden_dim, bias=False, gather_output=False, init_method=default_linear_init
)
def _silu_gating(self, x, y):
return F.silu(x) * y
def forward(self, x):
return self.w2(self._silu_gating(self.w1(x), self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def _forward_ffn(self, h):
return h + self.feed_forward(self.ffn_norm(h))
def _forward_attention(self, x, start_pos, freqs_cis, mask, prompt):
return x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, prompt)
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], prompt=None):
h = self._forward_attention(x, start_pos, freqs_cis, mask, prompt)
out = self._forward_ffn(h)
return out
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
class Transformer(nn.Module):
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = ParallelEmbedding(
params.vocab_size, params.dim, init_method=nn.init.normal_,
)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = ColumnParallelLinear(
params.dim, params.vocab_size, bias=False, init_method=default_linear_init,
)
self.freqs_cis = precompute_freqs_cis(
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
)
# load clip
self.clip, _, _ = open_clip.create_model_and_transforms(
'ViT-L-14', pretrained='openai')
for param in self.clip.parameters():
param.requires_grad = False
param.data = param.data.half()
self.clip.transformer = None
self.image_words = 30
self.cache_image_words = 0 # for inference
clip_width = self.clip.visual.conv1.out_channels
# create modal shared modules
self.resample_layers = nn.ModuleDict()
self.num_experts = 3
self.num_resample_layers = 8
for expert in range(self.num_experts):
expert = str(expert)
self.resample_layers[expert] = nn.ModuleList()
resampler_params = copy.deepcopy(params)
resampler_params.n_heads = 16
resampler_params.dim = clip_width
for layer_id in range(self.num_resample_layers):
self.resample_layers[expert].append(
TransformerBlock(layer_id, resampler_params))
self.conv1 = nn.ModuleDict()
self.positional_embedding = nn.ParameterDict()
self.resample_tokens = nn.ParameterDict()
self.clip_proj1 = nn.ModuleDict()
self.clip_proj2 = nn.ModuleDict()
self.routers = nn.ModuleDict()
self.start_tag = nn.ParameterDict()
self.end_tag = nn.ParameterDict()
self.modals = ['image', 'audio', 'point', 'video', 'rgbd', 'rgbn', 'fmri', 'imu']
for modal in self.modals:
if modal in ['image', 'video', 'rgbn', 'rgbn']:
modal_tokens = 256 + 1
pass
elif modal == 'audio':
self.conv1[modal] = nn.Conv2d(
1, clip_width, kernel_size=(16, 16), stride=(10, 10))
modal_tokens = 1212 + 1
self.positional_embedding[modal] = nn.Parameter(
torch.empty([modal_tokens, clip_width]))
nn.init.normal_(self.positional_embedding[modal], std=0.02)
elif modal == 'point':
from model.lib.point_utils import PointPatchEmbed
self.conv1[modal] = PointPatchEmbed(
in_channels=6, channels=clip_width)
modal_tokens = 1024 + 1
self.positional_embedding[modal] = nn.Parameter(
torch.empty([modal_tokens, clip_width]))
nn.init.normal_(self.positional_embedding[modal], std=0.02)
elif modal == 'fmri':
self.conv1[modal] = nn.Linear(15724, 8192)
self.positional_embedding[modal] = nn.Parameter(
torch.empty([8+1, clip_width]))
nn.init.normal_(self.positional_embedding[modal], std=0.02)
elif modal == 'imu':
self.conv1[modal] = nn.Conv1d(
in_channels=6, out_channels=clip_width, kernel_size=10, bias=False)
self.positional_embedding[modal] = nn.Parameter(
torch.empty([391+1, clip_width]))
nn.init.normal_(self.positional_embedding[modal], std=0.02)
self.routers[modal] = Mlp(
clip_width, clip_width * 4, self.num_experts)
self.resample_tokens[modal] = nn.Parameter(
torch.empty([1, 30, resampler_params.dim]))
nn.init.normal_(self.resample_tokens[modal], std=0.02)
self.clip_proj1[modal] = nn.Sequential(
nn.Linear(clip_width, resampler_params.dim),
nn.LayerNorm(resampler_params.dim))
self.clip_proj2[modal] = nn.Sequential(
nn.Linear(resampler_params.dim, params.dim),
nn.LayerNorm(params.dim))
self.start_tag[modal] = nn.Parameter(torch.rand(1, 1, params.dim))
self.end_tag[modal] = nn.Parameter(torch.rand(1, 1, params.dim))
# @torch.no_grad()
def clip_encode_image(self, x, modal='image'):
# shape = [*, width, grid ** 2]
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1,
x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
# use pretrained pos embeding for rest modalities
pos_embedding = self.clip.visual.positional_embedding
if modal in ['audio', 'point', 'fmri', 'imu']:
pos_embedding = self.positional_embedding[modal]
x = x + pos_embedding.to(x.dtype)
x = self.clip.visual.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip.visual.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
# preserve all spatial tokens
x = self.clip.visual.ln_post(x[:, :, :])
# if self.clip.visual.proj is not None:
# x = x @ self.clip.visual.proj
return x
def encode_image(self, x, modal='image'):
bsz = x.size(0)
T = 1
if modal in ['image']:
# modified from CLIP
x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid]
elif modal in ['audio', 'imu']:
x = self.conv1[modal](x)
elif modal == 'point':
# [B, 16384, 6] -> [B, 1024, 1024, 1]
x = self.conv1[modal](x.float()).to(x.dtype)
elif modal in ['video', 'rgbd', 'rgbn']:
# [B, 15, 3, 224, 224]
B, T = x.shape[:2]
bsz = B * T
x = x.reshape(bsz, *x.shape[2:])
x = self.clip.visual.conv1(x)
elif modal == 'fmri':
x = self.conv1[modal](x)
# [B, 1, 8196] -> [B, 1024, 8]
x = x.reshape(x.size(0), self.clip.visual.conv1.out_channels, -1)
image_feats = self.clip_encode_image(x, modal=modal)
# take mean on time dimension
# all inputs are reduced to [B, L, D]
bsz = int(bsz / T)
image_feats = image_feats.reshape(
bsz, T, *image_feats.shape[1:]).mean(dim=1)
image_feats = self.clip_proj1[modal](image_feats)
image_feats = torch.cat(
[self.resample_tokens[modal].repeat(bsz, 1, 1), image_feats], dim=1)
# routing modalites
# [B, L, D]->[B, L, N]
routing_weights = self.routers[modal](image_feats).sigmoid()
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)
image_feats_experts = []
for expert_id in range(self.num_experts):
image_feats_expert = image_feats
for layer in self.resample_layers[str(expert_id)]:
image_feats_expert = layer(image_feats_expert, 0, None, None)
image_feats_expert = image_feats_expert[:, :self.resample_tokens[modal].size(1)]
routing_weight = routing_weights[:, :self.resample_tokens[modal].size(
1), expert_id]
# [B, L, D] * [B, L, 1]
image_feats_expert = image_feats_expert * routing_weight[:, :, None]
image_feats_experts.append(image_feats_expert)
image_feats = sum(image_feats_experts)
image_feats = self.clip_proj2[modal](image_feats)
return image_feats
def forward(self, examples, image=None, modal='image'):
self._destroy_kv_cache() # training always disables kv cache
modal = modal[0]
_bsz, seqlen = examples.shape
h = self.tok_embeddings(examples)
self.freqs_cis = self.freqs_cis.to(h.device)
start_pos = 0
prefix_len = 0
if image is not None:
h_bos, h_caption = h[:, :1], h[:, 1:]
image_tokens = self.encode_image(image, modal)
h = torch.cat((h_bos, self.start_tag[modal].expand(
_bsz, -1, -1), image_tokens, self.end_tag[modal].expand(_bsz, -1, -1), h_caption), dim=1)
# bos + image token + start_tag[modal], end_tag[modal] is used for caption generation
prefix_len = image_tokens.shape[1] + 1 + 1
seqlen = h.shape[1]
freqs_cis = self.freqs_cis[start_pos:start_pos + seqlen]
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device)
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
for layer in self.layers:
h = layer(h, start_pos, freqs_cis, mask)
h = self.norm(h)
output = self.output(h[:, prefix_len:, :])
return output
@torch.inference_mode()
def forward_inference(self, tokens: torch.Tensor, start_pos: int, image=None, modal='image'):
modal = modal[0] if isinstance(modal, list) else modal
_bsz, seqlen = tokens.shape
if start_pos == 0:
# kv cache will not re-allocate if size is unchanged
self._allocate_kv_cache(_bsz)
h = self.tok_embeddings(tokens)
self.freqs_cis = self.freqs_cis.to(h.device)
if image is not None:
h_bos, h_caption = h[:, :1], h[:, 1:]
image_tokens = self.encode_image(image, modal)
self.cache_image_words = image_tokens.shape[1]
h = torch.cat((h_bos, self.start_tag[modal].repeat(_bsz, 1, 1), image_tokens, self.end_tag[modal].repeat(_bsz, 1, 1), h_caption), dim=1)
seqlen = h.shape[1]
freqs_cis = self.freqs_cis[0: seqlen]
else:
if start_pos == 0:
self.cache_image_words = 0
freqs_cis = self.freqs_cis[0: seqlen]
else:
# if image was not None when start_pos=0,
# the offset should be added to start_pos within later forward_inference calls
start_pos = start_pos + self.cache_image_words
freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen]
# freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
mask = None
if seqlen > 1:
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
for layer in self.layers:
h = layer(h, start_pos, freqs_cis, mask)
h = self.norm(h)
output = self.output(h[:, -1, :]) # only compute last logits
return output.float()
def _allocate_kv_cache(self, max_batch_size: int) -> None:
for layer in self.layers:
layer.attention.allocate_kv_cache(
max_batch_size, self.params.max_seq_len)
def _destroy_kv_cache(self) -> None:
for layer in self.layers:
layer.attention.destroy_kv_cache()
|