File size: 18,569 Bytes
8b54513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------

import builtins
import datetime
import os
import glob
import time
from collections import defaultdict, deque
from pathlib import Path
import subprocess

import torch
import torch.distributed as dist
from torch import inf
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp import (
    FullyShardedDataParallel as FSDP,
    StateDictType,
    FullStateDictConfig,
)
from torch.distributed._shard.api import load_with_process_group

from fairscale.nn.model_parallel import initialize as fs_init

from types import TracebackType
from typing import Any, Optional
import torch
import torch.nn as nn

class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None, start_iter=0):
        i = start_iter
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        log_msg = [
            header,
            '[{0' + '}/{1}]',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f}')
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0:
                try:
                    total_len = len(iterable)
                except:
                    total_len = "unknown"
                if torch.cuda.is_available():
                    print(log_msg.format(
                        i, total_len,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        i, total_len,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    builtin_print = builtins.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
#        force = force or (get_world_size() > 8)
        if is_master or force:
            now = datetime.datetime.now().time()
            builtin_print('[{}] '.format(now), end='')  # print with time stamp
            builtin_print(*args, **kwargs)

    builtins.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)

def init_distributed_mode(args):
    if args.dist_on_itp:
        args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
        args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
        args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
        args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
        os.environ['LOCAL_RANK'] = str(args.gpu)
        os.environ['RANK'] = str(args.rank)
        os.environ['WORLD_SIZE'] = str(args.world_size)
        # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
    elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL_RANK'])
    elif 'SLURM_PROCID' in os.environ:
        os.environ['MASTER_PORT'] = '8994'
        while 'MASTER_ADDR' not in os.environ or len(os.environ['MASTER_ADDR'].strip()) == 0:
            os.environ['MASTER_ADDR'] = subprocess.check_output('sinfo -Nh -n %s | head -n 1 | awk \'{print $1}\'' % os.environ['SLURM_NODELIST'], shell=True, ).decode().strip()
            time.sleep(1)
        print(os.environ['MASTER_ADDR'])
        args.world_size = int(os.environ['SLURM_NPROCS'])
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()
        args.local_rank = args.gpu
        os.environ['LOCAL_RANK'] = str(args.gpu)
        os.environ['WORLD_SIZE'] = str(args.world_size)
        os.environ['RANK'] = str(args.rank)
    else:
        print('Not using distributed mode')
        setup_for_distributed(is_master=True)  # hack
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}, gpu {}'.format(
        args.rank, args.dist_url, args.gpu), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)


def init_distributed_mode1(args):
    if args.dist_on_itp:
        args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
        args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
        args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
        args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
        os.environ['LOCAL_RANK'] = str(args.gpu)
        os.environ['RANK'] = str(args.rank)
        os.environ['WORLD_SIZE'] = str(args.world_size)
        # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
    elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL_RANK'])
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()
    else:
        print('Not using distributed mode')
        setup_for_distributed(is_master=True)  # hack
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}, gpu {}'.format(
        args.rank, args.dist_url, args.gpu), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)


class NativeScalerWithGradNormCount:
    state_dict_key = "amp_scaler"

    def __init__(self, args):
        self._scaler = ShardedGradScaler(enabled=args.precision in ["fp16"])

    def __call__(self, loss, optimizer, model, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
        if update_grad:
            self._scaler.scale(loss).backward(create_graph=create_graph)
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                # norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
                norm = model.clip_grad_norm_(clip_grad)
            else:
                raise NotImplementedError("please set clip_grad to a very large value if you do not want to clip.")
                self._scaler.unscale_(optimizer)
                norm = get_grad_norm_(parameters)
            self._scaler.step(optimizer)
            self._scaler.update()
        else:
            with model.no_sync():
                self._scaler.scale(loss).backward(create_graph=create_graph)
            norm = None
        return norm

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):
        self._scaler.load_state_dict(state_dict)


def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = [p for p in parameters if p.grad is not None]
    norm_type = float(norm_type)
    if len(parameters) == 0:
        return torch.tensor(0.)
    device = parameters[0].grad.device
    if norm_type == inf:
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
    return total_norm


def save_model(output_dir, args, epoch, iteration, model, optimizer, loss_scaler, dataset_state):
    save_dir = os.path.join(output_dir, f"epoch_{epoch}_iter_{iteration:09d}")
    os.makedirs(save_dir, exist_ok=True)
    with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
        to_save = {
            "model": model.state_dict(),
            "optimizer": optimizer.state_dict(),
            "iter": iteration,
            "epoch": epoch,
            "scaler": loss_scaler.state_dict(),
            "args": args,
            "dataset_state": dataset_state,
        }
        save_path = os.path.join(
            save_dir,
            f"checkpoint.{dist.get_rank():05d}-of-{dist.get_world_size():05d}.pth",
        )
        torch.save(to_save, save_path)

    if args.save_consolidated:
        mp_rank = fs_init.get_model_parallel_rank()
        mp_world_size = fs_init.get_model_parallel_world_size()
        consolidated_model_save_path = os.path.join(
            save_dir,
            f"consolidated.{mp_rank:02d}-of-{mp_world_size:02d}.pth",
        )
        with FSDP.state_dict_type(
            model,
            StateDictType.FULL_STATE_DICT,
            FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
        ):
            save_dtype = {
                "fp16": torch.float16,
                "bf16": torch.bfloat16,
                "tf32": torch.float32,
            }[args.precision]
            consolidated_model_state_dict = {
                k: v.to(save_dtype) for k, v in model.state_dict().items()
            }
        if fs_init.get_data_parallel_rank() == 0:
            torch.save(consolidated_model_state_dict, consolidated_model_save_path)
    
    # remove previous ckpts
    ckpts = glob.glob(os.path.join(output_dir, "iter_*")) + glob.glob(os.path.join(output_dir, "epoch_*"))
    ckpts.sort()
    if len(ckpts)>2 and not args.keep_all:
        for ckpt in ckpts[:-2]:
            print('del', ckpt)
            os.system(f'rm {ckpt} -rf')

def load_model(args, model, optimizer, loss_scaler):
    start_iter = 0
    start_epoch = 0
    if args.auto_resume:
        ckpt_dirs = glob.glob(os.path.join(args.output_dir, "iter_*")) + glob.glob(os.path.join(args.output_dir, "epoch_*"))
        ckpt_dirs.sort()
        if len(ckpt_dirs) > 0:
            args.resume = ckpt_dirs[-1]
    if args.resume:
        print("Resume checkpoint %s" % args.resume)
        local_checkpoint_path = os.path.join(
            args.resume,
            f"checkpoint.{dist.get_rank():05d}-of-{dist.get_world_size():05d}.pth",
        )
        with load_with_process_group(fs_init.get_data_parallel_group()):
            checkpoint = torch.load(local_checkpoint_path, map_location='cpu')
        with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
            model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        loss_scaler.load_state_dict(checkpoint['scaler'])
        start_iter = int(checkpoint['iter']) + 1
        if 'epoch' in checkpoint:
            start_epoch = int(checkpoint['epoch'])
    return start_epoch, start_iter
    
def all_reduce_mean(x):
    world_size = get_world_size()
    if world_size > 1:
        if isinstance(x, torch.Tensor):
            x_reduce = x.clone().cuda()
        else:
            x_reduce = torch.tensor(x).cuda()
        dist.all_reduce(x_reduce)
        x_reduce /= world_size
        return x_reduce.item()
    else:
        return x


def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
    decay = []
    no_decay = []
    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights
        #if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
        if name.endswith(".bias") or name.endswith("norm.weight"):
            no_decay.append(param)
        else:
            decay.append(param)
    return [
        {'params': no_decay, 'weight_decay': 0.},
        {'params': decay, 'weight_decay': weight_decay}]




class default_tensor_type:
    _tensor_type_stack = [(torch.float, "cpu")]
    
    def __init__(
        self,
        dtype: Optional[torch.dtype] = None,
        device: Optional[str] = None,
    ) -> None:
        # Only limited combinations are supported.
        assert device is None or device in ["cpu", "cuda"]
        assert dtype is None or dtype in [torch.float, torch.bfloat16, torch.half]
        self.dtype, self.device = dtype, device
    
    def __enter__(self) -> None:
        dtype, device = self.dtype, self.device
        if dtype is None:
            dtype = default_tensor_type._tensor_type_stack[-1][0]
        if device is None:
            device = default_tensor_type._tensor_type_stack[-1][1]
        default_tensor_type._tensor_type_stack.append((dtype, device))
        
        # We use all 3 calls since the new apis (set_default_device, set_default_dtype)
        # seems to be ineffective sometimes (e.g., set_default_device is ineffective to
        # torch.Tensor calls).
        torch.set_default_tensor_type(default_tensor_type.get_tensor_type(dtype, device))
        torch.set_default_device(device)
        torch.set_default_dtype(dtype)

    def __exit__(
        self,
        exc_type: Optional[type[BaseException]],
        exc_val: Optional[BaseException],
        exc_tb: Optional[TracebackType],
    ) -> None:
        default_tensor_type._tensor_type_stack.pop()
        dtype, device = default_tensor_type._tensor_type_stack[-1]

        torch.set_default_tensor_type(default_tensor_type.get_tensor_type(dtype, device))
        torch.set_default_device(device)
        torch.set_default_dtype(dtype)

    @staticmethod
    def get_tensor_type(dtype: torch.dtype, device: str) -> Any:
        return {
            (torch.float, "cpu"): torch.FloatTensor,
            (torch.bfloat16, "cpu"): torch.BFloat16Tensor,
            (torch.half, "cpu"): torch.HalfTensor,
            (torch.float, "cuda"): torch.cuda.FloatTensor,
            (torch.bfloat16, "cuda"): torch.cuda.BFloat16Tensor,
            (torch.half, "cuda"): torch.cuda.HalfTensor,
        }[(dtype, device)]