OneLLM / model /lib /point_utils.py
csuhan's picture
Upload folder using huggingface_hub
3ea8b34
raw
history blame
6.83 kB
import torch
import torch.nn as nn
from torch.autograd import Function
from . import pointnet2_cuda
class KNN(nn.Module):
def __init__(self, neighbors, transpose_mode=True):
super(KNN, self).__init__()
self.neighbors = neighbors
@torch.no_grad()
def forward(self, support, query):
"""
Args:
support ([tensor]): [B, N, C]
query ([tensor]): [B, M, C]
Returns:
[int]: neighbor idx. [B, M, K]
"""
dist = torch.cdist(support, query)
k_dist = dist.topk(k=self.neighbors, dim=1, largest=False)
return k_dist.values, k_dist.indices.transpose(1, 2).contiguous().int()
class GroupingOperation(Function):
@staticmethod
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
"""
:param ctx:
:param features: (B, C, N) tensor of features to group
:param idx: (B, npoint, nsample) tensor containing the indicies of features to group with
:return:
output: (B, C, npoint, nsample) tensor
"""
assert features.is_contiguous()
assert idx.is_contiguous()
B, nfeatures, nsample = idx.size()
_, C, N = features.size()
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample, device=features.device)
pointnet2_cuda.group_points_wrapper(B, C, N, nfeatures, nsample, features, idx, output)
ctx.for_backwards = (idx, N)
return output
@staticmethod
def backward(ctx, grad_out: torch.Tensor):
"""
:param ctx:
:param grad_out: (B, C, npoint, nsample) tensor of the gradients of the output from forward
:return:
grad_features: (B, C, N) gradient of the features
"""
idx, N = ctx.for_backwards
B, C, npoint, nsample = grad_out.size()
grad_features = torch.zeros([B, C, N], dtype=torch.float, device=grad_out.device, requires_grad=True)
grad_out_data = grad_out.data.contiguous()
pointnet2_cuda.group_points_grad_wrapper(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
return grad_features, None
grouping_operation = GroupingOperation.apply
class KNNGroup(nn.Module):
def __init__(self, nsample: int,
relative_xyz=True,
normalize_dp=False,
return_only_idx=False,
**kwargs
):
"""[summary]
Args:
nsample (int): maximum number of features to gather in the ball
use_xyz (bool, optional): concate xyz. Defaults to True.
ret_grouped_xyz (bool, optional): [description]. Defaults to False.
normalize_dp (bool, optional): [description]. Defaults to False.
"""
super().__init__()
self.nsample = nsample
self.knn = KNN(nsample, transpose_mode=True)
self.relative_xyz = relative_xyz
self.normalize_dp = normalize_dp
self.return_only_idx = return_only_idx
def forward(self, query_xyz: torch.Tensor, support_xyz: torch.Tensor, features: torch.Tensor = None):
"""
:param query_xyz: (B, N, 3) xyz coordinates of the features
:param support_xyz: (B, npoint, 3) centroids
:param features: (B, C, N) descriptors of the features
:return:
new_features: (B, 3 + C, npoint, nsample)
"""
_, idx = self.knn(support_xyz, query_xyz)
if self.return_only_idx:
return idx
idx = idx.int()
xyz_trans = support_xyz.transpose(1, 2).contiguous()
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample)
if self.relative_xyz:
grouped_xyz -= query_xyz.transpose(1, 2).unsqueeze(-1) # relative position
if self.normalize_dp:
grouped_xyz /= torch.amax(torch.sqrt(torch.sum(grouped_xyz**2, dim=1)), dim=(1, 2)).view(-1, 1, 1, 1)
if features is not None:
grouped_features = grouping_operation(features, idx)
return grouped_xyz, grouped_features
else:
return grouped_xyz, None
class FurthestPointSampling(Function):
@staticmethod
def forward(ctx, xyz: torch.Tensor, npoint: int) -> torch.Tensor:
"""
Uses iterative furthest point sampling to select a set of npoint features that have the largest
minimum distance
:param ctx:
:param xyz: (B, N, 3) where N > npoint
:param npoint: int, number of features in the sampled set
:return:
output: (B, npoint) tensor containing the set (idx)
"""
assert xyz.is_contiguous()
B, N, _ = xyz.size()
# output = torch.cuda.IntTensor(B, npoint, device=xyz.device)
# temp = torch.cuda.FloatTensor(B, N, device=xyz.device).fill_(1e10)
output = torch.cuda.IntTensor(B, npoint)
temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
pointnet2_cuda.furthest_point_sampling_wrapper(
B, N, npoint, xyz, temp, output)
return output
@staticmethod
def backward(xyz, a=None):
return None, None
furthest_point_sample = FurthestPointSampling.apply
class PointPatchEmbed(nn.Module):
def __init__(self,
sample_ratio=0.0625,
sample_number=1024,
group_size=32,
in_channels=6,
channels=1024,
kernel_size=1,
stride=1,
normalize_dp=False,
relative_xyz=True,
):
super().__init__()
self.sample_ratio = sample_ratio
self.sample_number = sample_number
self.group_size = group_size
self.sample_fn = furthest_point_sample
self.grouper = KNNGroup(self.group_size, relative_xyz=relative_xyz, normalize_dp=normalize_dp)
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=kernel_size, stride=stride)
def forward(self, x):
# coordinates
p = x[:, :, 3:].contiguous()
B, N, _ = p.shape[:3]
# idx = self.sample_fn(p, int(N * self.sample_ratio)).long()
idx = self.sample_fn(p, self.sample_number).long()
center_p = torch.gather(p, 1, idx.unsqueeze(-1).expand(-1, -1, 3))
# query neighbors.
_, fj = self.grouper(center_p, p, x.permute(0, 2, 1).contiguous()) # [B, N, 6] -> [B, 6, N] -> [B, 6, 1024, 32]
# [B, 6, 1024] -> [B, channels, 1024, 1]
fj = self.conv1(fj).max(dim=-1, keepdim=True)[0]
return fj
if __name__ == '__main__':
model = PointPatchEmbed(channels=256).cuda()
input = torch.rand(4, 16384, 6).cuda()
ou = model(input)
import pdb;pdb.set_trace()