Spaces:
Runtime error
Runtime error
Delete lib
Browse files- lib/__pycache__/point_utils.cpython-310.pyc +0 -0
- lib/point_utils.py +0 -191
- lib/pointnet2/pointnet2_modules.py +0 -160
- lib/pointnet2/pointnet2_utils.py +0 -290
- lib/pointnet2/pytorch_utils.py +0 -236
- lib/pointnet2/setup.py +0 -23
- lib/pointnet2/src/ball_query.cpp +0 -24
- lib/pointnet2/src/ball_query_gpu.cu +0 -67
- lib/pointnet2/src/ball_query_gpu.h +0 -15
- lib/pointnet2/src/cuda_utils.h +0 -15
- lib/pointnet2/src/group_points.cpp +0 -34
- lib/pointnet2/src/group_points_gpu.cu +0 -86
- lib/pointnet2/src/group_points_gpu.h +0 -22
- lib/pointnet2/src/interpolate.cpp +0 -53
- lib/pointnet2/src/interpolate_gpu.cu +0 -161
- lib/pointnet2/src/interpolate_gpu.h +0 -30
- lib/pointnet2/src/pointnet2_api.cpp +0 -24
- lib/pointnet2/src/sampling.cpp +0 -45
- lib/pointnet2/src/sampling_gpu.cu +0 -253
- lib/pointnet2/src/sampling_gpu.h +0 -29
lib/__pycache__/point_utils.cpython-310.pyc
DELETED
Binary file (6.74 kB)
|
|
lib/point_utils.py
DELETED
@@ -1,191 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torch.autograd import Function
|
4 |
-
import pointnet2_cuda
|
5 |
-
|
6 |
-
class KNN(nn.Module):
|
7 |
-
def __init__(self, neighbors, transpose_mode=True):
|
8 |
-
super(KNN, self).__init__()
|
9 |
-
self.neighbors = neighbors
|
10 |
-
|
11 |
-
@torch.no_grad()
|
12 |
-
def forward(self, support, query):
|
13 |
-
"""
|
14 |
-
Args:
|
15 |
-
support ([tensor]): [B, N, C]
|
16 |
-
query ([tensor]): [B, M, C]
|
17 |
-
Returns:
|
18 |
-
[int]: neighbor idx. [B, M, K]
|
19 |
-
"""
|
20 |
-
dist = torch.cdist(support, query)
|
21 |
-
k_dist = dist.topk(k=self.neighbors, dim=1, largest=False)
|
22 |
-
return k_dist.values, k_dist.indices.transpose(1, 2).contiguous().int()
|
23 |
-
|
24 |
-
|
25 |
-
class GroupingOperation(Function):
|
26 |
-
|
27 |
-
@staticmethod
|
28 |
-
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
|
29 |
-
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
30 |
-
"""
|
31 |
-
:param ctx:
|
32 |
-
:param features: (B, C, N) tensor of features to group
|
33 |
-
:param idx: (B, npoint, nsample) tensor containing the indicies of features to group with
|
34 |
-
:return:
|
35 |
-
output: (B, C, npoint, nsample) tensor
|
36 |
-
"""
|
37 |
-
assert features.is_contiguous()
|
38 |
-
assert idx.is_contiguous()
|
39 |
-
|
40 |
-
B, nfeatures, nsample = idx.size()
|
41 |
-
_, C, N = features.size()
|
42 |
-
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample, device=features.device)
|
43 |
-
|
44 |
-
pointnet2_cuda.group_points_wrapper(B, C, N, nfeatures, nsample, features, idx, output)
|
45 |
-
|
46 |
-
ctx.for_backwards = (idx, N)
|
47 |
-
return output
|
48 |
-
|
49 |
-
@staticmethod
|
50 |
-
def backward(ctx, grad_out: torch.Tensor):
|
51 |
-
"""
|
52 |
-
:param ctx:
|
53 |
-
:param grad_out: (B, C, npoint, nsample) tensor of the gradients of the output from forward
|
54 |
-
:return:
|
55 |
-
grad_features: (B, C, N) gradient of the features
|
56 |
-
"""
|
57 |
-
idx, N = ctx.for_backwards
|
58 |
-
|
59 |
-
B, C, npoint, nsample = grad_out.size()
|
60 |
-
grad_features = torch.zeros([B, C, N], dtype=torch.float, device=grad_out.device, requires_grad=True)
|
61 |
-
grad_out_data = grad_out.data.contiguous()
|
62 |
-
pointnet2_cuda.group_points_grad_wrapper(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
|
63 |
-
return grad_features, None
|
64 |
-
|
65 |
-
grouping_operation = GroupingOperation.apply
|
66 |
-
|
67 |
-
|
68 |
-
class KNNGroup(nn.Module):
|
69 |
-
def __init__(self, nsample: int,
|
70 |
-
relative_xyz=True,
|
71 |
-
normalize_dp=False,
|
72 |
-
return_only_idx=False,
|
73 |
-
**kwargs
|
74 |
-
):
|
75 |
-
"""[summary]
|
76 |
-
|
77 |
-
Args:
|
78 |
-
nsample (int): maximum number of features to gather in the ball
|
79 |
-
use_xyz (bool, optional): concate xyz. Defaults to True.
|
80 |
-
ret_grouped_xyz (bool, optional): [description]. Defaults to False.
|
81 |
-
normalize_dp (bool, optional): [description]. Defaults to False.
|
82 |
-
"""
|
83 |
-
super().__init__()
|
84 |
-
self.nsample = nsample
|
85 |
-
self.knn = KNN(nsample, transpose_mode=True)
|
86 |
-
self.relative_xyz = relative_xyz
|
87 |
-
self.normalize_dp = normalize_dp
|
88 |
-
self.return_only_idx = return_only_idx
|
89 |
-
|
90 |
-
def forward(self, query_xyz: torch.Tensor, support_xyz: torch.Tensor, features: torch.Tensor = None):
|
91 |
-
"""
|
92 |
-
:param query_xyz: (B, N, 3) xyz coordinates of the features
|
93 |
-
:param support_xyz: (B, npoint, 3) centroids
|
94 |
-
:param features: (B, C, N) descriptors of the features
|
95 |
-
:return:
|
96 |
-
new_features: (B, 3 + C, npoint, nsample)
|
97 |
-
"""
|
98 |
-
_, idx = self.knn(support_xyz, query_xyz)
|
99 |
-
if self.return_only_idx:
|
100 |
-
return idx
|
101 |
-
idx = idx.int()
|
102 |
-
xyz_trans = support_xyz.transpose(1, 2).contiguous()
|
103 |
-
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample)
|
104 |
-
if self.relative_xyz:
|
105 |
-
grouped_xyz -= query_xyz.transpose(1, 2).unsqueeze(-1) # relative position
|
106 |
-
if self.normalize_dp:
|
107 |
-
grouped_xyz /= torch.amax(torch.sqrt(torch.sum(grouped_xyz**2, dim=1)), dim=(1, 2)).view(-1, 1, 1, 1)
|
108 |
-
if features is not None:
|
109 |
-
grouped_features = grouping_operation(features, idx)
|
110 |
-
return grouped_xyz, grouped_features
|
111 |
-
else:
|
112 |
-
return grouped_xyz, None
|
113 |
-
|
114 |
-
|
115 |
-
class FurthestPointSampling(Function):
|
116 |
-
@staticmethod
|
117 |
-
def forward(ctx, xyz: torch.Tensor, npoint: int) -> torch.Tensor:
|
118 |
-
"""
|
119 |
-
Uses iterative furthest point sampling to select a set of npoint features that have the largest
|
120 |
-
minimum distance
|
121 |
-
:param ctx:
|
122 |
-
:param xyz: (B, N, 3) where N > npoint
|
123 |
-
:param npoint: int, number of features in the sampled set
|
124 |
-
:return:
|
125 |
-
output: (B, npoint) tensor containing the set (idx)
|
126 |
-
"""
|
127 |
-
assert xyz.is_contiguous()
|
128 |
-
|
129 |
-
B, N, _ = xyz.size()
|
130 |
-
# output = torch.cuda.IntTensor(B, npoint, device=xyz.device)
|
131 |
-
# temp = torch.cuda.FloatTensor(B, N, device=xyz.device).fill_(1e10)
|
132 |
-
output = torch.cuda.IntTensor(B, npoint)
|
133 |
-
temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
|
134 |
-
|
135 |
-
pointnet2_cuda.furthest_point_sampling_wrapper(
|
136 |
-
B, N, npoint, xyz, temp, output)
|
137 |
-
return output
|
138 |
-
|
139 |
-
@staticmethod
|
140 |
-
def backward(xyz, a=None):
|
141 |
-
return None, None
|
142 |
-
|
143 |
-
furthest_point_sample = FurthestPointSampling.apply
|
144 |
-
|
145 |
-
|
146 |
-
class PointPatchEmbed(nn.Module):
|
147 |
-
|
148 |
-
def __init__(self,
|
149 |
-
sample_ratio=0.0625,
|
150 |
-
sample_number=1024,
|
151 |
-
group_size=32,
|
152 |
-
in_channels=6,
|
153 |
-
channels=1024,
|
154 |
-
kernel_size=1,
|
155 |
-
stride=1,
|
156 |
-
normalize_dp=False,
|
157 |
-
relative_xyz=True,
|
158 |
-
):
|
159 |
-
super().__init__()
|
160 |
-
self.sample_ratio = sample_ratio
|
161 |
-
self.sample_number = sample_number
|
162 |
-
self.group_size = group_size
|
163 |
-
|
164 |
-
self.sample_fn = furthest_point_sample
|
165 |
-
self.grouper = KNNGroup(self.group_size, relative_xyz=relative_xyz, normalize_dp=normalize_dp)
|
166 |
-
|
167 |
-
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=kernel_size, stride=stride)
|
168 |
-
|
169 |
-
|
170 |
-
def forward(self, x):
|
171 |
-
# coordinates
|
172 |
-
p = x[:, :, 3:].contiguous()
|
173 |
-
|
174 |
-
B, N, _ = p.shape[:3]
|
175 |
-
# idx = self.sample_fn(p, int(N * self.sample_ratio)).long()
|
176 |
-
idx = self.sample_fn(p, self.sample_number).long()
|
177 |
-
center_p = torch.gather(p, 1, idx.unsqueeze(-1).expand(-1, -1, 3))
|
178 |
-
# query neighbors.
|
179 |
-
_, fj = self.grouper(center_p, p, x.permute(0, 2, 1).contiguous()) # [B, N, 6] -> [B, 6, N] -> [B, 6, 1024, 32]
|
180 |
-
|
181 |
-
# [B, 6, 1024] -> [B, channels, 1024, 1]
|
182 |
-
fj = self.conv1(fj).max(dim=-1, keepdim=True)[0]
|
183 |
-
|
184 |
-
return fj
|
185 |
-
|
186 |
-
|
187 |
-
if __name__ == '__main__':
|
188 |
-
model = PointPatchEmbed(channels=256).cuda()
|
189 |
-
input = torch.rand(4, 16384, 6).cuda()
|
190 |
-
ou = model(input)
|
191 |
-
import pdb;pdb.set_trace()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/pointnet2_modules.py
DELETED
@@ -1,160 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from . import pointnet2_utils
|
6 |
-
from . import pytorch_utils as pt_utils
|
7 |
-
from typing import List
|
8 |
-
|
9 |
-
|
10 |
-
class _PointnetSAModuleBase(nn.Module):
|
11 |
-
|
12 |
-
def __init__(self):
|
13 |
-
super().__init__()
|
14 |
-
self.npoint = None
|
15 |
-
self.groupers = None
|
16 |
-
self.mlps = None
|
17 |
-
self.pool_method = 'max_pool'
|
18 |
-
|
19 |
-
def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor):
|
20 |
-
"""
|
21 |
-
:param xyz: (B, N, 3) tensor of the xyz coordinates of the features
|
22 |
-
:param features: (B, N, C) tensor of the descriptors of the the features
|
23 |
-
:param new_xyz:
|
24 |
-
:return:
|
25 |
-
new_xyz: (B, npoint, 3) tensor of the new features' xyz
|
26 |
-
new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors
|
27 |
-
"""
|
28 |
-
new_features_list = []
|
29 |
-
|
30 |
-
xyz_flipped = xyz.transpose(1, 2).contiguous()
|
31 |
-
if new_xyz is None:
|
32 |
-
new_xyz = pointnet2_utils.gather_operation(
|
33 |
-
xyz_flipped,
|
34 |
-
pointnet2_utils.furthest_point_sample(xyz, self.npoint)
|
35 |
-
).transpose(1, 2).contiguous() if self.npoint is not None else None
|
36 |
-
|
37 |
-
for i in range(len(self.groupers)):
|
38 |
-
new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample)
|
39 |
-
|
40 |
-
new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint, nsample)
|
41 |
-
if self.pool_method == 'max_pool':
|
42 |
-
new_features = F.max_pool2d(
|
43 |
-
new_features, kernel_size=[1, new_features.size(3)]
|
44 |
-
) # (B, mlp[-1], npoint, 1)
|
45 |
-
elif self.pool_method == 'avg_pool':
|
46 |
-
new_features = F.avg_pool2d(
|
47 |
-
new_features, kernel_size=[1, new_features.size(3)]
|
48 |
-
) # (B, mlp[-1], npoint, 1)
|
49 |
-
else:
|
50 |
-
raise NotImplementedError
|
51 |
-
|
52 |
-
new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint)
|
53 |
-
new_features_list.append(new_features)
|
54 |
-
|
55 |
-
return new_xyz, torch.cat(new_features_list, dim=1)
|
56 |
-
|
57 |
-
|
58 |
-
class PointnetSAModuleMSG(_PointnetSAModuleBase):
|
59 |
-
"""Pointnet set abstraction layer with multiscale grouping"""
|
60 |
-
|
61 |
-
def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True,
|
62 |
-
use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
|
63 |
-
"""
|
64 |
-
:param npoint: int
|
65 |
-
:param radii: list of float, list of radii to group with
|
66 |
-
:param nsamples: list of int, number of samples in each ball query
|
67 |
-
:param mlps: list of list of int, spec of the pointnet before the global pooling for each scale
|
68 |
-
:param bn: whether to use batchnorm
|
69 |
-
:param use_xyz:
|
70 |
-
:param pool_method: max_pool / avg_pool
|
71 |
-
:param instance_norm: whether to use instance_norm
|
72 |
-
"""
|
73 |
-
super().__init__()
|
74 |
-
|
75 |
-
assert len(radii) == len(nsamples) == len(mlps)
|
76 |
-
|
77 |
-
self.npoint = npoint
|
78 |
-
self.groupers = nn.ModuleList()
|
79 |
-
self.mlps = nn.ModuleList()
|
80 |
-
for i in range(len(radii)):
|
81 |
-
radius = radii[i]
|
82 |
-
nsample = nsamples[i]
|
83 |
-
self.groupers.append(
|
84 |
-
pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
|
85 |
-
if npoint is not None else pointnet2_utils.GroupAll(use_xyz)
|
86 |
-
)
|
87 |
-
mlp_spec = mlps[i]
|
88 |
-
if use_xyz:
|
89 |
-
mlp_spec[0] += 3
|
90 |
-
|
91 |
-
self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm))
|
92 |
-
self.pool_method = pool_method
|
93 |
-
|
94 |
-
|
95 |
-
class PointnetSAModule(PointnetSAModuleMSG):
|
96 |
-
"""Pointnet set abstraction layer"""
|
97 |
-
|
98 |
-
def __init__(self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None,
|
99 |
-
bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
|
100 |
-
"""
|
101 |
-
:param mlp: list of int, spec of the pointnet before the global max_pool
|
102 |
-
:param npoint: int, number of features
|
103 |
-
:param radius: float, radius of ball
|
104 |
-
:param nsample: int, number of samples in the ball query
|
105 |
-
:param bn: whether to use batchnorm
|
106 |
-
:param use_xyz:
|
107 |
-
:param pool_method: max_pool / avg_pool
|
108 |
-
:param instance_norm: whether to use instance_norm
|
109 |
-
"""
|
110 |
-
super().__init__(
|
111 |
-
mlps=[mlp], npoint=npoint, radii=[radius], nsamples=[nsample], bn=bn, use_xyz=use_xyz,
|
112 |
-
pool_method=pool_method, instance_norm=instance_norm
|
113 |
-
)
|
114 |
-
|
115 |
-
|
116 |
-
class PointnetFPModule(nn.Module):
|
117 |
-
r"""Propigates the features of one set to another"""
|
118 |
-
|
119 |
-
def __init__(self, *, mlp: List[int], bn: bool = True):
|
120 |
-
"""
|
121 |
-
:param mlp: list of int
|
122 |
-
:param bn: whether to use batchnorm
|
123 |
-
"""
|
124 |
-
super().__init__()
|
125 |
-
self.mlp = pt_utils.SharedMLP(mlp, bn=bn)
|
126 |
-
|
127 |
-
def forward(
|
128 |
-
self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor
|
129 |
-
) -> torch.Tensor:
|
130 |
-
"""
|
131 |
-
:param unknown: (B, n, 3) tensor of the xyz positions of the unknown features
|
132 |
-
:param known: (B, m, 3) tensor of the xyz positions of the known features
|
133 |
-
:param unknow_feats: (B, C1, n) tensor of the features to be propigated to
|
134 |
-
:param known_feats: (B, C2, m) tensor of features to be propigated
|
135 |
-
:return:
|
136 |
-
new_features: (B, mlp[-1], n) tensor of the features of the unknown features
|
137 |
-
"""
|
138 |
-
if known is not None:
|
139 |
-
dist, idx = pointnet2_utils.three_nn(unknown, known)
|
140 |
-
dist_recip = 1.0 / (dist + 1e-8)
|
141 |
-
norm = torch.sum(dist_recip, dim=2, keepdim=True)
|
142 |
-
weight = dist_recip / norm
|
143 |
-
|
144 |
-
interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight)
|
145 |
-
else:
|
146 |
-
interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1))
|
147 |
-
|
148 |
-
if unknow_feats is not None:
|
149 |
-
new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n)
|
150 |
-
else:
|
151 |
-
new_features = interpolated_feats
|
152 |
-
|
153 |
-
new_features = new_features.unsqueeze(-1)
|
154 |
-
new_features = self.mlp(new_features)
|
155 |
-
|
156 |
-
return new_features.squeeze(-1)
|
157 |
-
|
158 |
-
|
159 |
-
if __name__ == "__main__":
|
160 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/pointnet2_utils.py
DELETED
@@ -1,290 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.autograd import Variable
|
3 |
-
from torch.autograd import Function
|
4 |
-
import torch.nn as nn
|
5 |
-
from typing import Tuple
|
6 |
-
|
7 |
-
import pointnet2_cuda as pointnet2
|
8 |
-
|
9 |
-
|
10 |
-
class FurthestPointSampling(Function):
|
11 |
-
@staticmethod
|
12 |
-
def forward(ctx, xyz: torch.Tensor, npoint: int) -> torch.Tensor:
|
13 |
-
"""
|
14 |
-
Uses iterative furthest point sampling to select a set of npoint features that have the largest
|
15 |
-
minimum distance
|
16 |
-
:param ctx:
|
17 |
-
:param xyz: (B, N, 3) where N > npoint
|
18 |
-
:param npoint: int, number of features in the sampled set
|
19 |
-
:return:
|
20 |
-
output: (B, npoint) tensor containing the set
|
21 |
-
"""
|
22 |
-
assert xyz.is_contiguous()
|
23 |
-
|
24 |
-
B, N, _ = xyz.size()
|
25 |
-
output = torch.cuda.IntTensor(B, npoint)
|
26 |
-
temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
|
27 |
-
|
28 |
-
pointnet2.furthest_point_sampling_wrapper(B, N, npoint, xyz, temp, output)
|
29 |
-
return output
|
30 |
-
|
31 |
-
@staticmethod
|
32 |
-
def backward(xyz, a=None):
|
33 |
-
return None, None
|
34 |
-
|
35 |
-
|
36 |
-
furthest_point_sample = FurthestPointSampling.apply
|
37 |
-
|
38 |
-
|
39 |
-
class GatherOperation(Function):
|
40 |
-
|
41 |
-
@staticmethod
|
42 |
-
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
43 |
-
"""
|
44 |
-
:param ctx:
|
45 |
-
:param features: (B, C, N)
|
46 |
-
:param idx: (B, npoint) index tensor of the features to gather
|
47 |
-
:return:
|
48 |
-
output: (B, C, npoint)
|
49 |
-
"""
|
50 |
-
assert features.is_contiguous()
|
51 |
-
assert idx.is_contiguous()
|
52 |
-
|
53 |
-
B, npoint = idx.size()
|
54 |
-
_, C, N = features.size()
|
55 |
-
output = torch.cuda.FloatTensor(B, C, npoint)
|
56 |
-
|
57 |
-
pointnet2.gather_points_wrapper(B, C, N, npoint, features, idx, output)
|
58 |
-
|
59 |
-
ctx.for_backwards = (idx, C, N)
|
60 |
-
return output
|
61 |
-
|
62 |
-
@staticmethod
|
63 |
-
def backward(ctx, grad_out):
|
64 |
-
idx, C, N = ctx.for_backwards
|
65 |
-
B, npoint = idx.size()
|
66 |
-
|
67 |
-
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
|
68 |
-
grad_out_data = grad_out.data.contiguous()
|
69 |
-
pointnet2.gather_points_grad_wrapper(B, C, N, npoint, grad_out_data, idx, grad_features.data)
|
70 |
-
return grad_features, None
|
71 |
-
|
72 |
-
|
73 |
-
gather_operation = GatherOperation.apply
|
74 |
-
|
75 |
-
|
76 |
-
class ThreeNN(Function):
|
77 |
-
|
78 |
-
@staticmethod
|
79 |
-
def forward(ctx, unknown: torch.Tensor, known: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
80 |
-
"""
|
81 |
-
Find the three nearest neighbors of unknown in known
|
82 |
-
:param ctx:
|
83 |
-
:param unknown: (B, N, 3)
|
84 |
-
:param known: (B, M, 3)
|
85 |
-
:return:
|
86 |
-
dist: (B, N, 3) l2 distance to the three nearest neighbors
|
87 |
-
idx: (B, N, 3) index of 3 nearest neighbors
|
88 |
-
"""
|
89 |
-
assert unknown.is_contiguous()
|
90 |
-
assert known.is_contiguous()
|
91 |
-
|
92 |
-
B, N, _ = unknown.size()
|
93 |
-
m = known.size(1)
|
94 |
-
dist2 = torch.cuda.FloatTensor(B, N, 3)
|
95 |
-
idx = torch.cuda.IntTensor(B, N, 3)
|
96 |
-
|
97 |
-
pointnet2.three_nn_wrapper(B, N, m, unknown, known, dist2, idx)
|
98 |
-
return torch.sqrt(dist2), idx
|
99 |
-
|
100 |
-
@staticmethod
|
101 |
-
def backward(ctx, a=None, b=None):
|
102 |
-
return None, None
|
103 |
-
|
104 |
-
|
105 |
-
three_nn = ThreeNN.apply
|
106 |
-
|
107 |
-
|
108 |
-
class ThreeInterpolate(Function):
|
109 |
-
|
110 |
-
@staticmethod
|
111 |
-
def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
|
112 |
-
"""
|
113 |
-
Performs weight linear interpolation on 3 features
|
114 |
-
:param ctx:
|
115 |
-
:param features: (B, C, M) Features descriptors to be interpolated from
|
116 |
-
:param idx: (B, n, 3) three nearest neighbors of the target features in features
|
117 |
-
:param weight: (B, n, 3) weights
|
118 |
-
:return:
|
119 |
-
output: (B, C, N) tensor of the interpolated features
|
120 |
-
"""
|
121 |
-
assert features.is_contiguous()
|
122 |
-
assert idx.is_contiguous()
|
123 |
-
assert weight.is_contiguous()
|
124 |
-
|
125 |
-
B, c, m = features.size()
|
126 |
-
n = idx.size(1)
|
127 |
-
ctx.three_interpolate_for_backward = (idx, weight, m)
|
128 |
-
output = torch.cuda.FloatTensor(B, c, n)
|
129 |
-
|
130 |
-
pointnet2.three_interpolate_wrapper(B, c, m, n, features, idx, weight, output)
|
131 |
-
return output
|
132 |
-
|
133 |
-
@staticmethod
|
134 |
-
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
135 |
-
"""
|
136 |
-
:param ctx:
|
137 |
-
:param grad_out: (B, C, N) tensor with gradients of outputs
|
138 |
-
:return:
|
139 |
-
grad_features: (B, C, M) tensor with gradients of features
|
140 |
-
None:
|
141 |
-
None:
|
142 |
-
"""
|
143 |
-
idx, weight, m = ctx.three_interpolate_for_backward
|
144 |
-
B, c, n = grad_out.size()
|
145 |
-
|
146 |
-
grad_features = Variable(torch.cuda.FloatTensor(B, c, m).zero_())
|
147 |
-
grad_out_data = grad_out.data.contiguous()
|
148 |
-
|
149 |
-
pointnet2.three_interpolate_grad_wrapper(B, c, n, m, grad_out_data, idx, weight, grad_features.data)
|
150 |
-
return grad_features, None, None
|
151 |
-
|
152 |
-
|
153 |
-
three_interpolate = ThreeInterpolate.apply
|
154 |
-
|
155 |
-
|
156 |
-
class GroupingOperation(Function):
|
157 |
-
|
158 |
-
@staticmethod
|
159 |
-
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
160 |
-
"""
|
161 |
-
:param ctx:
|
162 |
-
:param features: (B, C, N) tensor of features to group
|
163 |
-
:param idx: (B, npoint, nsample) tensor containing the indicies of features to group with
|
164 |
-
:return:
|
165 |
-
output: (B, C, npoint, nsample) tensor
|
166 |
-
"""
|
167 |
-
assert features.is_contiguous()
|
168 |
-
assert idx.is_contiguous()
|
169 |
-
|
170 |
-
B, nfeatures, nsample = idx.size()
|
171 |
-
_, C, N = features.size()
|
172 |
-
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
|
173 |
-
|
174 |
-
pointnet2.group_points_wrapper(B, C, N, nfeatures, nsample, features, idx, output)
|
175 |
-
|
176 |
-
ctx.for_backwards = (idx, N)
|
177 |
-
return output
|
178 |
-
|
179 |
-
@staticmethod
|
180 |
-
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
181 |
-
"""
|
182 |
-
:param ctx:
|
183 |
-
:param grad_out: (B, C, npoint, nsample) tensor of the gradients of the output from forward
|
184 |
-
:return:
|
185 |
-
grad_features: (B, C, N) gradient of the features
|
186 |
-
"""
|
187 |
-
idx, N = ctx.for_backwards
|
188 |
-
|
189 |
-
B, C, npoint, nsample = grad_out.size()
|
190 |
-
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
|
191 |
-
|
192 |
-
grad_out_data = grad_out.data.contiguous()
|
193 |
-
pointnet2.group_points_grad_wrapper(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
|
194 |
-
return grad_features, None
|
195 |
-
|
196 |
-
|
197 |
-
grouping_operation = GroupingOperation.apply
|
198 |
-
|
199 |
-
|
200 |
-
class BallQuery(Function):
|
201 |
-
|
202 |
-
@staticmethod
|
203 |
-
def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor) -> torch.Tensor:
|
204 |
-
"""
|
205 |
-
:param ctx:
|
206 |
-
:param radius: float, radius of the balls
|
207 |
-
:param nsample: int, maximum number of features in the balls
|
208 |
-
:param xyz: (B, N, 3) xyz coordinates of the features
|
209 |
-
:param new_xyz: (B, npoint, 3) centers of the ball query
|
210 |
-
:return:
|
211 |
-
idx: (B, npoint, nsample) tensor with the indicies of the features that form the query balls
|
212 |
-
"""
|
213 |
-
assert new_xyz.is_contiguous()
|
214 |
-
assert xyz.is_contiguous()
|
215 |
-
|
216 |
-
B, N, _ = xyz.size()
|
217 |
-
npoint = new_xyz.size(1)
|
218 |
-
idx = torch.cuda.IntTensor(B, npoint, nsample).zero_()
|
219 |
-
|
220 |
-
pointnet2.ball_query_wrapper(B, N, npoint, radius, nsample, new_xyz, xyz, idx)
|
221 |
-
return idx
|
222 |
-
|
223 |
-
@staticmethod
|
224 |
-
def backward(ctx, a=None):
|
225 |
-
return None, None, None, None
|
226 |
-
|
227 |
-
|
228 |
-
ball_query = BallQuery.apply
|
229 |
-
|
230 |
-
|
231 |
-
class QueryAndGroup(nn.Module):
|
232 |
-
def __init__(self, radius: float, nsample: int, use_xyz: bool = True):
|
233 |
-
"""
|
234 |
-
:param radius: float, radius of ball
|
235 |
-
:param nsample: int, maximum number of features to gather in the ball
|
236 |
-
:param use_xyz:
|
237 |
-
"""
|
238 |
-
super().__init__()
|
239 |
-
self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz
|
240 |
-
|
241 |
-
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None) -> Tuple[torch.Tensor]:
|
242 |
-
"""
|
243 |
-
:param xyz: (B, N, 3) xyz coordinates of the features
|
244 |
-
:param new_xyz: (B, npoint, 3) centroids
|
245 |
-
:param features: (B, C, N) descriptors of the features
|
246 |
-
:return:
|
247 |
-
new_features: (B, 3 + C, npoint, nsample)
|
248 |
-
"""
|
249 |
-
idx = ball_query(self.radius, self.nsample, xyz, new_xyz)
|
250 |
-
xyz_trans = xyz.transpose(1, 2).contiguous()
|
251 |
-
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample)
|
252 |
-
grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1)
|
253 |
-
|
254 |
-
if features is not None:
|
255 |
-
grouped_features = grouping_operation(features, idx)
|
256 |
-
if self.use_xyz:
|
257 |
-
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, C + 3, npoint, nsample)
|
258 |
-
else:
|
259 |
-
new_features = grouped_features
|
260 |
-
else:
|
261 |
-
assert self.use_xyz, "Cannot have not features and not use xyz as a feature!"
|
262 |
-
new_features = grouped_xyz
|
263 |
-
|
264 |
-
return new_features
|
265 |
-
|
266 |
-
|
267 |
-
class GroupAll(nn.Module):
|
268 |
-
def __init__(self, use_xyz: bool = True):
|
269 |
-
super().__init__()
|
270 |
-
self.use_xyz = use_xyz
|
271 |
-
|
272 |
-
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None):
|
273 |
-
"""
|
274 |
-
:param xyz: (B, N, 3) xyz coordinates of the features
|
275 |
-
:param new_xyz: ignored
|
276 |
-
:param features: (B, C, N) descriptors of the features
|
277 |
-
:return:
|
278 |
-
new_features: (B, C + 3, 1, N)
|
279 |
-
"""
|
280 |
-
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
|
281 |
-
if features is not None:
|
282 |
-
grouped_features = features.unsqueeze(2)
|
283 |
-
if self.use_xyz:
|
284 |
-
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, 3 + C, 1, N)
|
285 |
-
else:
|
286 |
-
new_features = grouped_features
|
287 |
-
else:
|
288 |
-
new_features = grouped_xyz
|
289 |
-
|
290 |
-
return new_features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/pytorch_utils.py
DELETED
@@ -1,236 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
|
5 |
-
class SharedMLP(nn.Sequential):
|
6 |
-
|
7 |
-
def __init__(
|
8 |
-
self,
|
9 |
-
args: List[int],
|
10 |
-
*,
|
11 |
-
bn: bool = False,
|
12 |
-
activation=nn.ReLU(inplace=True),
|
13 |
-
preact: bool = False,
|
14 |
-
first: bool = False,
|
15 |
-
name: str = "",
|
16 |
-
instance_norm: bool = False,
|
17 |
-
):
|
18 |
-
super().__init__()
|
19 |
-
|
20 |
-
for i in range(len(args) - 1):
|
21 |
-
self.add_module(
|
22 |
-
name + 'layer{}'.format(i),
|
23 |
-
Conv2d(
|
24 |
-
args[i],
|
25 |
-
args[i + 1],
|
26 |
-
bn=(not first or not preact or (i != 0)) and bn,
|
27 |
-
activation=activation
|
28 |
-
if (not first or not preact or (i != 0)) else None,
|
29 |
-
preact=preact,
|
30 |
-
instance_norm=instance_norm
|
31 |
-
)
|
32 |
-
)
|
33 |
-
|
34 |
-
|
35 |
-
class _ConvBase(nn.Sequential):
|
36 |
-
|
37 |
-
def __init__(
|
38 |
-
self,
|
39 |
-
in_size,
|
40 |
-
out_size,
|
41 |
-
kernel_size,
|
42 |
-
stride,
|
43 |
-
padding,
|
44 |
-
activation,
|
45 |
-
bn,
|
46 |
-
init,
|
47 |
-
conv=None,
|
48 |
-
batch_norm=None,
|
49 |
-
bias=True,
|
50 |
-
preact=False,
|
51 |
-
name="",
|
52 |
-
instance_norm=False,
|
53 |
-
instance_norm_func=None
|
54 |
-
):
|
55 |
-
super().__init__()
|
56 |
-
|
57 |
-
bias = bias and (not bn)
|
58 |
-
conv_unit = conv(
|
59 |
-
in_size,
|
60 |
-
out_size,
|
61 |
-
kernel_size=kernel_size,
|
62 |
-
stride=stride,
|
63 |
-
padding=padding,
|
64 |
-
bias=bias
|
65 |
-
)
|
66 |
-
init(conv_unit.weight)
|
67 |
-
if bias:
|
68 |
-
nn.init.constant_(conv_unit.bias, 0)
|
69 |
-
|
70 |
-
if bn:
|
71 |
-
if not preact:
|
72 |
-
bn_unit = batch_norm(out_size)
|
73 |
-
else:
|
74 |
-
bn_unit = batch_norm(in_size)
|
75 |
-
if instance_norm:
|
76 |
-
if not preact:
|
77 |
-
in_unit = instance_norm_func(out_size, affine=False, track_running_stats=False)
|
78 |
-
else:
|
79 |
-
in_unit = instance_norm_func(in_size, affine=False, track_running_stats=False)
|
80 |
-
|
81 |
-
if preact:
|
82 |
-
if bn:
|
83 |
-
self.add_module(name + 'bn', bn_unit)
|
84 |
-
|
85 |
-
if activation is not None:
|
86 |
-
self.add_module(name + 'activation', activation)
|
87 |
-
|
88 |
-
if not bn and instance_norm:
|
89 |
-
self.add_module(name + 'in', in_unit)
|
90 |
-
|
91 |
-
self.add_module(name + 'conv', conv_unit)
|
92 |
-
|
93 |
-
if not preact:
|
94 |
-
if bn:
|
95 |
-
self.add_module(name + 'bn', bn_unit)
|
96 |
-
|
97 |
-
if activation is not None:
|
98 |
-
self.add_module(name + 'activation', activation)
|
99 |
-
|
100 |
-
if not bn and instance_norm:
|
101 |
-
self.add_module(name + 'in', in_unit)
|
102 |
-
|
103 |
-
|
104 |
-
class _BNBase(nn.Sequential):
|
105 |
-
|
106 |
-
def __init__(self, in_size, batch_norm=None, name=""):
|
107 |
-
super().__init__()
|
108 |
-
self.add_module(name + "bn", batch_norm(in_size))
|
109 |
-
|
110 |
-
nn.init.constant_(self[0].weight, 1.0)
|
111 |
-
nn.init.constant_(self[0].bias, 0)
|
112 |
-
|
113 |
-
|
114 |
-
class BatchNorm1d(_BNBase):
|
115 |
-
|
116 |
-
def __init__(self, in_size: int, *, name: str = ""):
|
117 |
-
super().__init__(in_size, batch_norm=nn.BatchNorm1d, name=name)
|
118 |
-
|
119 |
-
|
120 |
-
class BatchNorm2d(_BNBase):
|
121 |
-
|
122 |
-
def __init__(self, in_size: int, name: str = ""):
|
123 |
-
super().__init__(in_size, batch_norm=nn.BatchNorm2d, name=name)
|
124 |
-
|
125 |
-
|
126 |
-
class Conv1d(_ConvBase):
|
127 |
-
|
128 |
-
def __init__(
|
129 |
-
self,
|
130 |
-
in_size: int,
|
131 |
-
out_size: int,
|
132 |
-
*,
|
133 |
-
kernel_size: int = 1,
|
134 |
-
stride: int = 1,
|
135 |
-
padding: int = 0,
|
136 |
-
activation=nn.ReLU(inplace=True),
|
137 |
-
bn: bool = False,
|
138 |
-
init=nn.init.kaiming_normal_,
|
139 |
-
bias: bool = True,
|
140 |
-
preact: bool = False,
|
141 |
-
name: str = "",
|
142 |
-
instance_norm=False
|
143 |
-
):
|
144 |
-
super().__init__(
|
145 |
-
in_size,
|
146 |
-
out_size,
|
147 |
-
kernel_size,
|
148 |
-
stride,
|
149 |
-
padding,
|
150 |
-
activation,
|
151 |
-
bn,
|
152 |
-
init,
|
153 |
-
conv=nn.Conv1d,
|
154 |
-
batch_norm=BatchNorm1d,
|
155 |
-
bias=bias,
|
156 |
-
preact=preact,
|
157 |
-
name=name,
|
158 |
-
instance_norm=instance_norm,
|
159 |
-
instance_norm_func=nn.InstanceNorm1d
|
160 |
-
)
|
161 |
-
|
162 |
-
|
163 |
-
class Conv2d(_ConvBase):
|
164 |
-
|
165 |
-
def __init__(
|
166 |
-
self,
|
167 |
-
in_size: int,
|
168 |
-
out_size: int,
|
169 |
-
*,
|
170 |
-
kernel_size: Tuple[int, int] = (1, 1),
|
171 |
-
stride: Tuple[int, int] = (1, 1),
|
172 |
-
padding: Tuple[int, int] = (0, 0),
|
173 |
-
activation=nn.ReLU(inplace=True),
|
174 |
-
bn: bool = False,
|
175 |
-
init=nn.init.kaiming_normal_,
|
176 |
-
bias: bool = True,
|
177 |
-
preact: bool = False,
|
178 |
-
name: str = "",
|
179 |
-
instance_norm=False
|
180 |
-
):
|
181 |
-
super().__init__(
|
182 |
-
in_size,
|
183 |
-
out_size,
|
184 |
-
kernel_size,
|
185 |
-
stride,
|
186 |
-
padding,
|
187 |
-
activation,
|
188 |
-
bn,
|
189 |
-
init,
|
190 |
-
conv=nn.Conv2d,
|
191 |
-
batch_norm=BatchNorm2d,
|
192 |
-
bias=bias,
|
193 |
-
preact=preact,
|
194 |
-
name=name,
|
195 |
-
instance_norm=instance_norm,
|
196 |
-
instance_norm_func=nn.InstanceNorm2d
|
197 |
-
)
|
198 |
-
|
199 |
-
|
200 |
-
class FC(nn.Sequential):
|
201 |
-
|
202 |
-
def __init__(
|
203 |
-
self,
|
204 |
-
in_size: int,
|
205 |
-
out_size: int,
|
206 |
-
*,
|
207 |
-
activation=nn.ReLU(inplace=True),
|
208 |
-
bn: bool = False,
|
209 |
-
init=None,
|
210 |
-
preact: bool = False,
|
211 |
-
name: str = ""
|
212 |
-
):
|
213 |
-
super().__init__()
|
214 |
-
|
215 |
-
fc = nn.Linear(in_size, out_size, bias=not bn)
|
216 |
-
if init is not None:
|
217 |
-
init(fc.weight)
|
218 |
-
if not bn:
|
219 |
-
nn.init.constant(fc.bias, 0)
|
220 |
-
|
221 |
-
if preact:
|
222 |
-
if bn:
|
223 |
-
self.add_module(name + 'bn', BatchNorm1d(in_size))
|
224 |
-
|
225 |
-
if activation is not None:
|
226 |
-
self.add_module(name + 'activation', activation)
|
227 |
-
|
228 |
-
self.add_module(name + 'fc', fc)
|
229 |
-
|
230 |
-
if not preact:
|
231 |
-
if bn:
|
232 |
-
self.add_module(name + 'bn', BatchNorm1d(out_size))
|
233 |
-
|
234 |
-
if activation is not None:
|
235 |
-
self.add_module(name + 'activation', activation)
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/setup.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
from setuptools import setup
|
2 |
-
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
|
3 |
-
|
4 |
-
setup(
|
5 |
-
name='pointnet2',
|
6 |
-
ext_modules=[
|
7 |
-
CUDAExtension('pointnet2_cuda', [
|
8 |
-
'src/pointnet2_api.cpp',
|
9 |
-
|
10 |
-
'src/ball_query.cpp',
|
11 |
-
'src/ball_query_gpu.cu',
|
12 |
-
'src/group_points.cpp',
|
13 |
-
'src/group_points_gpu.cu',
|
14 |
-
'src/interpolate.cpp',
|
15 |
-
'src/interpolate_gpu.cu',
|
16 |
-
'src/sampling.cpp',
|
17 |
-
'src/sampling_gpu.cu',
|
18 |
-
],
|
19 |
-
extra_compile_args={'cxx': ['-g'],
|
20 |
-
'nvcc': ['-O2']})
|
21 |
-
],
|
22 |
-
cmdclass={'build_ext': BuildExtension}
|
23 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/ball_query.cpp
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
#include <torch/serialize/tensor.h>
|
2 |
-
#include <vector>
|
3 |
-
#include <ATen/cuda/CUDAContext.h>
|
4 |
-
#include <ATen/cuda/CUDAEvent.h>
|
5 |
-
#include <cuda.h>
|
6 |
-
#include <cuda_runtime_api.h>
|
7 |
-
#include "ball_query_gpu.h"
|
8 |
-
|
9 |
-
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
|
10 |
-
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ")
|
11 |
-
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
|
12 |
-
|
13 |
-
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
|
14 |
-
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) {
|
15 |
-
CHECK_INPUT(new_xyz_tensor);
|
16 |
-
CHECK_INPUT(xyz_tensor);
|
17 |
-
const float *new_xyz = new_xyz_tensor.data<float>();
|
18 |
-
const float *xyz = xyz_tensor.data<float>();
|
19 |
-
int *idx = idx_tensor.data<int>();
|
20 |
-
|
21 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
22 |
-
ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx, stream);
|
23 |
-
return 1;
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/ball_query_gpu.cu
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
#include <math.h>
|
2 |
-
#include <stdio.h>
|
3 |
-
#include <stdlib.h>
|
4 |
-
|
5 |
-
#include "ball_query_gpu.h"
|
6 |
-
#include "cuda_utils.h"
|
7 |
-
|
8 |
-
|
9 |
-
__global__ void ball_query_kernel_fast(int b, int n, int m, float radius, int nsample,
|
10 |
-
const float *__restrict__ new_xyz, const float *__restrict__ xyz, int *__restrict__ idx) {
|
11 |
-
// new_xyz: (B, M, 3)
|
12 |
-
// xyz: (B, N, 3)
|
13 |
-
// output:
|
14 |
-
// idx: (B, M, nsample)
|
15 |
-
int bs_idx = blockIdx.y;
|
16 |
-
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
17 |
-
if (bs_idx >= b || pt_idx >= m) return;
|
18 |
-
|
19 |
-
new_xyz += bs_idx * m * 3 + pt_idx * 3;
|
20 |
-
xyz += bs_idx * n * 3;
|
21 |
-
idx += bs_idx * m * nsample + pt_idx * nsample;
|
22 |
-
|
23 |
-
float radius2 = radius * radius;
|
24 |
-
float new_x = new_xyz[0];
|
25 |
-
float new_y = new_xyz[1];
|
26 |
-
float new_z = new_xyz[2];
|
27 |
-
|
28 |
-
int cnt = 0;
|
29 |
-
for (int k = 0; k < n; ++k) {
|
30 |
-
float x = xyz[k * 3 + 0];
|
31 |
-
float y = xyz[k * 3 + 1];
|
32 |
-
float z = xyz[k * 3 + 2];
|
33 |
-
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
|
34 |
-
if (d2 < radius2){
|
35 |
-
if (cnt == 0){
|
36 |
-
for (int l = 0; l < nsample; ++l) {
|
37 |
-
idx[l] = k;
|
38 |
-
}
|
39 |
-
}
|
40 |
-
idx[cnt] = k;
|
41 |
-
++cnt;
|
42 |
-
if (cnt >= nsample) break;
|
43 |
-
}
|
44 |
-
}
|
45 |
-
}
|
46 |
-
|
47 |
-
|
48 |
-
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample, \
|
49 |
-
const float *new_xyz, const float *xyz, int *idx, cudaStream_t stream) {
|
50 |
-
// new_xyz: (B, M, 3)
|
51 |
-
// xyz: (B, N, 3)
|
52 |
-
// output:
|
53 |
-
// idx: (B, M, nsample)
|
54 |
-
|
55 |
-
cudaError_t err;
|
56 |
-
|
57 |
-
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
|
58 |
-
dim3 threads(THREADS_PER_BLOCK);
|
59 |
-
|
60 |
-
ball_query_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, radius, nsample, new_xyz, xyz, idx);
|
61 |
-
// cudaDeviceSynchronize(); // for using printf in kernel function
|
62 |
-
err = cudaGetLastError();
|
63 |
-
if (cudaSuccess != err) {
|
64 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
65 |
-
exit(-1);
|
66 |
-
}
|
67 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/ball_query_gpu.h
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
#ifndef _BALL_QUERY_GPU_H
|
2 |
-
#define _BALL_QUERY_GPU_H
|
3 |
-
|
4 |
-
#include <torch/serialize/tensor.h>
|
5 |
-
#include <vector>
|
6 |
-
#include <cuda.h>
|
7 |
-
#include <cuda_runtime_api.h>
|
8 |
-
|
9 |
-
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
|
10 |
-
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor);
|
11 |
-
|
12 |
-
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample,
|
13 |
-
const float *xyz, const float *new_xyz, int *idx, cudaStream_t stream);
|
14 |
-
|
15 |
-
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/cuda_utils.h
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
#ifndef _CUDA_UTILS_H
|
2 |
-
#define _CUDA_UTILS_H
|
3 |
-
|
4 |
-
#include <cmath>
|
5 |
-
|
6 |
-
#define TOTAL_THREADS 1024
|
7 |
-
#define THREADS_PER_BLOCK 256
|
8 |
-
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
|
9 |
-
|
10 |
-
inline int opt_n_threads(int work_size) {
|
11 |
-
const int pow_2 = std::log(static_cast<double>(work_size)) / std::log(2.0);
|
12 |
-
|
13 |
-
return max(min(1 << pow_2, TOTAL_THREADS), 1);
|
14 |
-
}
|
15 |
-
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/group_points.cpp
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
#include <torch/serialize/tensor.h>
|
2 |
-
#include <cuda.h>
|
3 |
-
#include <cuda_runtime_api.h>
|
4 |
-
#include <vector>
|
5 |
-
#include "group_points_gpu.h"
|
6 |
-
#include <ATen/cuda/CUDAContext.h>
|
7 |
-
#include <ATen/cuda/CUDAEvent.h>
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
12 |
-
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
|
13 |
-
|
14 |
-
float *grad_points = grad_points_tensor.data<float>();
|
15 |
-
const int *idx = idx_tensor.data<int>();
|
16 |
-
const float *grad_out = grad_out_tensor.data<float>();
|
17 |
-
|
18 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
19 |
-
group_points_grad_kernel_launcher_fast(b, c, n, npoints, nsample, grad_out, idx, grad_points, stream);
|
20 |
-
return 1;
|
21 |
-
}
|
22 |
-
|
23 |
-
|
24 |
-
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
25 |
-
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor) {
|
26 |
-
|
27 |
-
const float *points = points_tensor.data<float>();
|
28 |
-
const int *idx = idx_tensor.data<int>();
|
29 |
-
float *out = out_tensor.data<float>();
|
30 |
-
|
31 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
32 |
-
group_points_kernel_launcher_fast(b, c, n, npoints, nsample, points, idx, out, stream);
|
33 |
-
return 1;
|
34 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/group_points_gpu.cu
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
#include <stdio.h>
|
2 |
-
#include <stdlib.h>
|
3 |
-
|
4 |
-
#include "cuda_utils.h"
|
5 |
-
#include "group_points_gpu.h"
|
6 |
-
|
7 |
-
|
8 |
-
__global__ void group_points_grad_kernel_fast(int b, int c, int n, int npoints, int nsample,
|
9 |
-
const float *__restrict__ grad_out, const int *__restrict__ idx, float *__restrict__ grad_points) {
|
10 |
-
// grad_out: (B, C, npoints, nsample)
|
11 |
-
// idx: (B, npoints, nsample)
|
12 |
-
// output:
|
13 |
-
// grad_points: (B, C, N)
|
14 |
-
int bs_idx = blockIdx.z;
|
15 |
-
int c_idx = blockIdx.y;
|
16 |
-
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
17 |
-
int pt_idx = index / nsample;
|
18 |
-
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
|
19 |
-
|
20 |
-
int sample_idx = index % nsample;
|
21 |
-
grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
22 |
-
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
23 |
-
|
24 |
-
atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0] , grad_out[0]);
|
25 |
-
}
|
26 |
-
|
27 |
-
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
28 |
-
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
|
29 |
-
// grad_out: (B, C, npoints, nsample)
|
30 |
-
// idx: (B, npoints, nsample)
|
31 |
-
// output:
|
32 |
-
// grad_points: (B, C, N)
|
33 |
-
cudaError_t err;
|
34 |
-
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
35 |
-
dim3 threads(THREADS_PER_BLOCK);
|
36 |
-
|
37 |
-
group_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, grad_out, idx, grad_points);
|
38 |
-
|
39 |
-
err = cudaGetLastError();
|
40 |
-
if (cudaSuccess != err) {
|
41 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
42 |
-
exit(-1);
|
43 |
-
}
|
44 |
-
}
|
45 |
-
|
46 |
-
|
47 |
-
__global__ void group_points_kernel_fast(int b, int c, int n, int npoints, int nsample,
|
48 |
-
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
|
49 |
-
// points: (B, C, N)
|
50 |
-
// idx: (B, npoints, nsample)
|
51 |
-
// output:
|
52 |
-
// out: (B, C, npoints, nsample)
|
53 |
-
int bs_idx = blockIdx.z;
|
54 |
-
int c_idx = blockIdx.y;
|
55 |
-
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
56 |
-
int pt_idx = index / nsample;
|
57 |
-
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
|
58 |
-
|
59 |
-
int sample_idx = index % nsample;
|
60 |
-
|
61 |
-
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
62 |
-
int in_idx = bs_idx * c * n + c_idx * n + idx[0];
|
63 |
-
int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
64 |
-
|
65 |
-
out[out_idx] = points[in_idx];
|
66 |
-
}
|
67 |
-
|
68 |
-
|
69 |
-
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
70 |
-
const float *points, const int *idx, float *out, cudaStream_t stream) {
|
71 |
-
// points: (B, C, N)
|
72 |
-
// idx: (B, npoints, nsample)
|
73 |
-
// output:
|
74 |
-
// out: (B, C, npoints, nsample)
|
75 |
-
cudaError_t err;
|
76 |
-
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
77 |
-
dim3 threads(THREADS_PER_BLOCK);
|
78 |
-
|
79 |
-
group_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, points, idx, out);
|
80 |
-
// cudaDeviceSynchronize(); // for using printf in kernel function
|
81 |
-
err = cudaGetLastError();
|
82 |
-
if (cudaSuccess != err) {
|
83 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
84 |
-
exit(-1);
|
85 |
-
}
|
86 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/group_points_gpu.h
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
#ifndef _GROUP_POINTS_GPU_H
|
2 |
-
#define _GROUP_POINTS_GPU_H
|
3 |
-
|
4 |
-
#include <torch/serialize/tensor.h>
|
5 |
-
#include <cuda.h>
|
6 |
-
#include <cuda_runtime_api.h>
|
7 |
-
#include <vector>
|
8 |
-
|
9 |
-
|
10 |
-
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
11 |
-
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
|
12 |
-
|
13 |
-
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
14 |
-
const float *points, const int *idx, float *out, cudaStream_t stream);
|
15 |
-
|
16 |
-
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
17 |
-
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
|
18 |
-
|
19 |
-
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
20 |
-
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
|
21 |
-
|
22 |
-
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/interpolate.cpp
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
#include <torch/serialize/tensor.h>
|
2 |
-
#include <vector>
|
3 |
-
#include <math.h>
|
4 |
-
#include <stdio.h>
|
5 |
-
#include <stdlib.h>
|
6 |
-
#include <cuda.h>
|
7 |
-
#include <cuda_runtime_api.h>
|
8 |
-
#include "interpolate_gpu.h"
|
9 |
-
#include <ATen/cuda/CUDAContext.h>
|
10 |
-
#include <ATen/cuda/CUDAEvent.h>
|
11 |
-
|
12 |
-
|
13 |
-
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
|
14 |
-
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
|
15 |
-
const float *unknown = unknown_tensor.data<float>();
|
16 |
-
const float *known = known_tensor.data<float>();
|
17 |
-
float *dist2 = dist2_tensor.data<float>();
|
18 |
-
int *idx = idx_tensor.data<int>();
|
19 |
-
|
20 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
21 |
-
three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx, stream);
|
22 |
-
}
|
23 |
-
|
24 |
-
|
25 |
-
void three_interpolate_wrapper_fast(int b, int c, int m, int n,
|
26 |
-
at::Tensor points_tensor,
|
27 |
-
at::Tensor idx_tensor,
|
28 |
-
at::Tensor weight_tensor,
|
29 |
-
at::Tensor out_tensor) {
|
30 |
-
|
31 |
-
const float *points = points_tensor.data<float>();
|
32 |
-
const float *weight = weight_tensor.data<float>();
|
33 |
-
float *out = out_tensor.data<float>();
|
34 |
-
const int *idx = idx_tensor.data<int>();
|
35 |
-
|
36 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
37 |
-
three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out, stream);
|
38 |
-
}
|
39 |
-
|
40 |
-
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m,
|
41 |
-
at::Tensor grad_out_tensor,
|
42 |
-
at::Tensor idx_tensor,
|
43 |
-
at::Tensor weight_tensor,
|
44 |
-
at::Tensor grad_points_tensor) {
|
45 |
-
|
46 |
-
const float *grad_out = grad_out_tensor.data<float>();
|
47 |
-
const float *weight = weight_tensor.data<float>();
|
48 |
-
float *grad_points = grad_points_tensor.data<float>();
|
49 |
-
const int *idx = idx_tensor.data<int>();
|
50 |
-
|
51 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
52 |
-
three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points, stream);
|
53 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/interpolate_gpu.cu
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
#include <math.h>
|
2 |
-
#include <stdio.h>
|
3 |
-
#include <stdlib.h>
|
4 |
-
|
5 |
-
#include "cuda_utils.h"
|
6 |
-
#include "interpolate_gpu.h"
|
7 |
-
|
8 |
-
|
9 |
-
__global__ void three_nn_kernel_fast(int b, int n, int m, const float *__restrict__ unknown,
|
10 |
-
const float *__restrict__ known, float *__restrict__ dist2, int *__restrict__ idx) {
|
11 |
-
// unknown: (B, N, 3)
|
12 |
-
// known: (B, M, 3)
|
13 |
-
// output:
|
14 |
-
// dist2: (B, N, 3)
|
15 |
-
// idx: (B, N, 3)
|
16 |
-
|
17 |
-
int bs_idx = blockIdx.y;
|
18 |
-
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
19 |
-
if (bs_idx >= b || pt_idx >= n) return;
|
20 |
-
|
21 |
-
unknown += bs_idx * n * 3 + pt_idx * 3;
|
22 |
-
known += bs_idx * m * 3;
|
23 |
-
dist2 += bs_idx * n * 3 + pt_idx * 3;
|
24 |
-
idx += bs_idx * n * 3 + pt_idx * 3;
|
25 |
-
|
26 |
-
float ux = unknown[0];
|
27 |
-
float uy = unknown[1];
|
28 |
-
float uz = unknown[2];
|
29 |
-
|
30 |
-
double best1 = 1e40, best2 = 1e40, best3 = 1e40;
|
31 |
-
int besti1 = 0, besti2 = 0, besti3 = 0;
|
32 |
-
for (int k = 0; k < m; ++k) {
|
33 |
-
float x = known[k * 3 + 0];
|
34 |
-
float y = known[k * 3 + 1];
|
35 |
-
float z = known[k * 3 + 2];
|
36 |
-
float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
|
37 |
-
if (d < best1) {
|
38 |
-
best3 = best2; besti3 = besti2;
|
39 |
-
best2 = best1; besti2 = besti1;
|
40 |
-
best1 = d; besti1 = k;
|
41 |
-
}
|
42 |
-
else if (d < best2) {
|
43 |
-
best3 = best2; besti3 = besti2;
|
44 |
-
best2 = d; besti2 = k;
|
45 |
-
}
|
46 |
-
else if (d < best3) {
|
47 |
-
best3 = d; besti3 = k;
|
48 |
-
}
|
49 |
-
}
|
50 |
-
dist2[0] = best1; dist2[1] = best2; dist2[2] = best3;
|
51 |
-
idx[0] = besti1; idx[1] = besti2; idx[2] = besti3;
|
52 |
-
}
|
53 |
-
|
54 |
-
|
55 |
-
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
|
56 |
-
const float *known, float *dist2, int *idx, cudaStream_t stream) {
|
57 |
-
// unknown: (B, N, 3)
|
58 |
-
// known: (B, M, 3)
|
59 |
-
// output:
|
60 |
-
// dist2: (B, N, 3)
|
61 |
-
// idx: (B, N, 3)
|
62 |
-
|
63 |
-
cudaError_t err;
|
64 |
-
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
|
65 |
-
dim3 threads(THREADS_PER_BLOCK);
|
66 |
-
|
67 |
-
three_nn_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, unknown, known, dist2, idx);
|
68 |
-
|
69 |
-
err = cudaGetLastError();
|
70 |
-
if (cudaSuccess != err) {
|
71 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
72 |
-
exit(-1);
|
73 |
-
}
|
74 |
-
}
|
75 |
-
|
76 |
-
|
77 |
-
__global__ void three_interpolate_kernel_fast(int b, int c, int m, int n, const float *__restrict__ points,
|
78 |
-
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ out) {
|
79 |
-
// points: (B, C, M)
|
80 |
-
// idx: (B, N, 3)
|
81 |
-
// weight: (B, N, 3)
|
82 |
-
// output:
|
83 |
-
// out: (B, C, N)
|
84 |
-
|
85 |
-
int bs_idx = blockIdx.z;
|
86 |
-
int c_idx = blockIdx.y;
|
87 |
-
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
88 |
-
|
89 |
-
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
|
90 |
-
|
91 |
-
weight += bs_idx * n * 3 + pt_idx * 3;
|
92 |
-
points += bs_idx * c * m + c_idx * m;
|
93 |
-
idx += bs_idx * n * 3 + pt_idx * 3;
|
94 |
-
out += bs_idx * c * n + c_idx * n;
|
95 |
-
|
96 |
-
out[pt_idx] = weight[0] * points[idx[0]] + weight[1] * points[idx[1]] + weight[2] * points[idx[2]];
|
97 |
-
}
|
98 |
-
|
99 |
-
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
|
100 |
-
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream) {
|
101 |
-
// points: (B, C, M)
|
102 |
-
// idx: (B, N, 3)
|
103 |
-
// weight: (B, N, 3)
|
104 |
-
// output:
|
105 |
-
// out: (B, C, N)
|
106 |
-
|
107 |
-
cudaError_t err;
|
108 |
-
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
109 |
-
dim3 threads(THREADS_PER_BLOCK);
|
110 |
-
three_interpolate_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, m, n, points, idx, weight, out);
|
111 |
-
|
112 |
-
err = cudaGetLastError();
|
113 |
-
if (cudaSuccess != err) {
|
114 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
115 |
-
exit(-1);
|
116 |
-
}
|
117 |
-
}
|
118 |
-
|
119 |
-
|
120 |
-
__global__ void three_interpolate_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
|
121 |
-
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ grad_points) {
|
122 |
-
// grad_out: (B, C, N)
|
123 |
-
// weight: (B, N, 3)
|
124 |
-
// output:
|
125 |
-
// grad_points: (B, C, M)
|
126 |
-
|
127 |
-
int bs_idx = blockIdx.z;
|
128 |
-
int c_idx = blockIdx.y;
|
129 |
-
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
130 |
-
|
131 |
-
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
|
132 |
-
|
133 |
-
grad_out += bs_idx * c * n + c_idx * n + pt_idx;
|
134 |
-
weight += bs_idx * n * 3 + pt_idx * 3;
|
135 |
-
grad_points += bs_idx * c * m + c_idx * m;
|
136 |
-
idx += bs_idx * n * 3 + pt_idx * 3;
|
137 |
-
|
138 |
-
|
139 |
-
atomicAdd(grad_points + idx[0], grad_out[0] * weight[0]);
|
140 |
-
atomicAdd(grad_points + idx[1], grad_out[0] * weight[1]);
|
141 |
-
atomicAdd(grad_points + idx[2], grad_out[0] * weight[2]);
|
142 |
-
}
|
143 |
-
|
144 |
-
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
|
145 |
-
const int *idx, const float *weight, float *grad_points, cudaStream_t stream) {
|
146 |
-
// grad_out: (B, C, N)
|
147 |
-
// weight: (B, N, 3)
|
148 |
-
// output:
|
149 |
-
// grad_points: (B, C, M)
|
150 |
-
|
151 |
-
cudaError_t err;
|
152 |
-
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
153 |
-
dim3 threads(THREADS_PER_BLOCK);
|
154 |
-
three_interpolate_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, m, grad_out, idx, weight, grad_points);
|
155 |
-
|
156 |
-
err = cudaGetLastError();
|
157 |
-
if (cudaSuccess != err) {
|
158 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
159 |
-
exit(-1);
|
160 |
-
}
|
161 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/interpolate_gpu.h
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
#ifndef _INTERPOLATE_GPU_H
|
2 |
-
#define _INTERPOLATE_GPU_H
|
3 |
-
|
4 |
-
#include <torch/serialize/tensor.h>
|
5 |
-
#include<vector>
|
6 |
-
#include <cuda.h>
|
7 |
-
#include <cuda_runtime_api.h>
|
8 |
-
|
9 |
-
|
10 |
-
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
|
11 |
-
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor);
|
12 |
-
|
13 |
-
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
|
14 |
-
const float *known, float *dist2, int *idx, cudaStream_t stream);
|
15 |
-
|
16 |
-
|
17 |
-
void three_interpolate_wrapper_fast(int b, int c, int m, int n, at::Tensor points_tensor,
|
18 |
-
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor);
|
19 |
-
|
20 |
-
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
|
21 |
-
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream);
|
22 |
-
|
23 |
-
|
24 |
-
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m, at::Tensor grad_out_tensor,
|
25 |
-
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor grad_points_tensor);
|
26 |
-
|
27 |
-
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
|
28 |
-
const int *idx, const float *weight, float *grad_points, cudaStream_t stream);
|
29 |
-
|
30 |
-
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/pointnet2_api.cpp
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
#include <torch/serialize/tensor.h>
|
2 |
-
#include <torch/extension.h>
|
3 |
-
|
4 |
-
#include "ball_query_gpu.h"
|
5 |
-
#include "group_points_gpu.h"
|
6 |
-
#include "sampling_gpu.h"
|
7 |
-
#include "interpolate_gpu.h"
|
8 |
-
|
9 |
-
|
10 |
-
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
11 |
-
m.def("ball_query_wrapper", &ball_query_wrapper_fast, "ball_query_wrapper_fast");
|
12 |
-
|
13 |
-
m.def("group_points_wrapper", &group_points_wrapper_fast, "group_points_wrapper_fast");
|
14 |
-
m.def("group_points_grad_wrapper", &group_points_grad_wrapper_fast, "group_points_grad_wrapper_fast");
|
15 |
-
|
16 |
-
m.def("gather_points_wrapper", &gather_points_wrapper_fast, "gather_points_wrapper_fast");
|
17 |
-
m.def("gather_points_grad_wrapper", &gather_points_grad_wrapper_fast, "gather_points_grad_wrapper_fast");
|
18 |
-
|
19 |
-
m.def("furthest_point_sampling_wrapper", &furthest_point_sampling_wrapper, "furthest_point_sampling_wrapper");
|
20 |
-
|
21 |
-
m.def("three_nn_wrapper", &three_nn_wrapper_fast, "three_nn_wrapper_fast");
|
22 |
-
m.def("three_interpolate_wrapper", &three_interpolate_wrapper_fast, "three_interpolate_wrapper_fast");
|
23 |
-
m.def("three_interpolate_grad_wrapper", &three_interpolate_grad_wrapper_fast, "three_interpolate_grad_wrapper_fast");
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/sampling.cpp
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
#include <torch/serialize/tensor.h>
|
2 |
-
#include <ATen/cuda/CUDAContext.h>
|
3 |
-
#include <vector>
|
4 |
-
#include <ATen/cuda/CUDAContext.h>
|
5 |
-
#include <ATen/cuda/CUDAEvent.h>
|
6 |
-
#include "sampling_gpu.h"
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
|
11 |
-
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor){
|
12 |
-
const float *points = points_tensor.data<float>();
|
13 |
-
const int *idx = idx_tensor.data<int>();
|
14 |
-
float *out = out_tensor.data<float>();
|
15 |
-
|
16 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
17 |
-
gather_points_kernel_launcher_fast(b, c, n, npoints, points, idx, out, stream);
|
18 |
-
return 1;
|
19 |
-
}
|
20 |
-
|
21 |
-
|
22 |
-
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
|
23 |
-
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
|
24 |
-
|
25 |
-
const float *grad_out = grad_out_tensor.data<float>();
|
26 |
-
const int *idx = idx_tensor.data<int>();
|
27 |
-
float *grad_points = grad_points_tensor.data<float>();
|
28 |
-
|
29 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
30 |
-
gather_points_grad_kernel_launcher_fast(b, c, n, npoints, grad_out, idx, grad_points, stream);
|
31 |
-
return 1;
|
32 |
-
}
|
33 |
-
|
34 |
-
|
35 |
-
int furthest_point_sampling_wrapper(int b, int n, int m,
|
36 |
-
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor) {
|
37 |
-
|
38 |
-
const float *points = points_tensor.data<float>();
|
39 |
-
float *temp = temp_tensor.data<float>();
|
40 |
-
int *idx = idx_tensor.data<int>();
|
41 |
-
|
42 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
43 |
-
furthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx, stream);
|
44 |
-
return 1;
|
45 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/sampling_gpu.cu
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
#include <stdio.h>
|
2 |
-
#include <stdlib.h>
|
3 |
-
|
4 |
-
#include "cuda_utils.h"
|
5 |
-
#include "sampling_gpu.h"
|
6 |
-
|
7 |
-
|
8 |
-
__global__ void gather_points_kernel_fast(int b, int c, int n, int m,
|
9 |
-
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
|
10 |
-
// points: (B, C, N)
|
11 |
-
// idx: (B, M)
|
12 |
-
// output:
|
13 |
-
// out: (B, C, M)
|
14 |
-
|
15 |
-
int bs_idx = blockIdx.z;
|
16 |
-
int c_idx = blockIdx.y;
|
17 |
-
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
18 |
-
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
|
19 |
-
|
20 |
-
out += bs_idx * c * m + c_idx * m + pt_idx;
|
21 |
-
idx += bs_idx * m + pt_idx;
|
22 |
-
points += bs_idx * c * n + c_idx * n;
|
23 |
-
out[0] = points[idx[0]];
|
24 |
-
}
|
25 |
-
|
26 |
-
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
|
27 |
-
const float *points, const int *idx, float *out, cudaStream_t stream) {
|
28 |
-
// points: (B, C, N)
|
29 |
-
// idx: (B, npoints)
|
30 |
-
// output:
|
31 |
-
// out: (B, C, npoints)
|
32 |
-
|
33 |
-
cudaError_t err;
|
34 |
-
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
35 |
-
dim3 threads(THREADS_PER_BLOCK);
|
36 |
-
|
37 |
-
gather_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, points, idx, out);
|
38 |
-
|
39 |
-
err = cudaGetLastError();
|
40 |
-
if (cudaSuccess != err) {
|
41 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
42 |
-
exit(-1);
|
43 |
-
}
|
44 |
-
}
|
45 |
-
|
46 |
-
__global__ void gather_points_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
|
47 |
-
const int *__restrict__ idx, float *__restrict__ grad_points) {
|
48 |
-
// grad_out: (B, C, M)
|
49 |
-
// idx: (B, M)
|
50 |
-
// output:
|
51 |
-
// grad_points: (B, C, N)
|
52 |
-
|
53 |
-
int bs_idx = blockIdx.z;
|
54 |
-
int c_idx = blockIdx.y;
|
55 |
-
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
56 |
-
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
|
57 |
-
|
58 |
-
grad_out += bs_idx * c * m + c_idx * m + pt_idx;
|
59 |
-
idx += bs_idx * m + pt_idx;
|
60 |
-
grad_points += bs_idx * c * n + c_idx * n;
|
61 |
-
|
62 |
-
atomicAdd(grad_points + idx[0], grad_out[0]);
|
63 |
-
}
|
64 |
-
|
65 |
-
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
|
66 |
-
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
|
67 |
-
// grad_out: (B, C, npoints)
|
68 |
-
// idx: (B, npoints)
|
69 |
-
// output:
|
70 |
-
// grad_points: (B, C, N)
|
71 |
-
|
72 |
-
cudaError_t err;
|
73 |
-
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
74 |
-
dim3 threads(THREADS_PER_BLOCK);
|
75 |
-
|
76 |
-
gather_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, grad_out, idx, grad_points);
|
77 |
-
|
78 |
-
err = cudaGetLastError();
|
79 |
-
if (cudaSuccess != err) {
|
80 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
81 |
-
exit(-1);
|
82 |
-
}
|
83 |
-
}
|
84 |
-
|
85 |
-
|
86 |
-
__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i, int idx1, int idx2){
|
87 |
-
const float v1 = dists[idx1], v2 = dists[idx2];
|
88 |
-
const int i1 = dists_i[idx1], i2 = dists_i[idx2];
|
89 |
-
dists[idx1] = max(v1, v2);
|
90 |
-
dists_i[idx1] = v2 > v1 ? i2 : i1;
|
91 |
-
}
|
92 |
-
|
93 |
-
template <unsigned int block_size>
|
94 |
-
__global__ void furthest_point_sampling_kernel(int b, int n, int m,
|
95 |
-
const float *__restrict__ dataset, float *__restrict__ temp, int *__restrict__ idxs) {
|
96 |
-
// dataset: (B, N, 3)
|
97 |
-
// tmp: (B, N)
|
98 |
-
// output:
|
99 |
-
// idx: (B, M)
|
100 |
-
|
101 |
-
if (m <= 0) return;
|
102 |
-
__shared__ float dists[block_size];
|
103 |
-
__shared__ int dists_i[block_size];
|
104 |
-
|
105 |
-
int batch_index = blockIdx.x;
|
106 |
-
dataset += batch_index * n * 3;
|
107 |
-
temp += batch_index * n;
|
108 |
-
idxs += batch_index * m;
|
109 |
-
|
110 |
-
int tid = threadIdx.x;
|
111 |
-
const int stride = block_size;
|
112 |
-
|
113 |
-
int old = 0;
|
114 |
-
if (threadIdx.x == 0)
|
115 |
-
idxs[0] = old;
|
116 |
-
|
117 |
-
__syncthreads();
|
118 |
-
for (int j = 1; j < m; j++) {
|
119 |
-
int besti = 0;
|
120 |
-
float best = -1;
|
121 |
-
float x1 = dataset[old * 3 + 0];
|
122 |
-
float y1 = dataset[old * 3 + 1];
|
123 |
-
float z1 = dataset[old * 3 + 2];
|
124 |
-
for (int k = tid; k < n; k += stride) {
|
125 |
-
float x2, y2, z2;
|
126 |
-
x2 = dataset[k * 3 + 0];
|
127 |
-
y2 = dataset[k * 3 + 1];
|
128 |
-
z2 = dataset[k * 3 + 2];
|
129 |
-
// float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
|
130 |
-
// if (mag <= 1e-3)
|
131 |
-
// continue;
|
132 |
-
|
133 |
-
float d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
|
134 |
-
float d2 = min(d, temp[k]);
|
135 |
-
temp[k] = d2;
|
136 |
-
besti = d2 > best ? k : besti;
|
137 |
-
best = d2 > best ? d2 : best;
|
138 |
-
}
|
139 |
-
dists[tid] = best;
|
140 |
-
dists_i[tid] = besti;
|
141 |
-
__syncthreads();
|
142 |
-
|
143 |
-
if (block_size >= 1024) {
|
144 |
-
if (tid < 512) {
|
145 |
-
__update(dists, dists_i, tid, tid + 512);
|
146 |
-
}
|
147 |
-
__syncthreads();
|
148 |
-
}
|
149 |
-
|
150 |
-
if (block_size >= 512) {
|
151 |
-
if (tid < 256) {
|
152 |
-
__update(dists, dists_i, tid, tid + 256);
|
153 |
-
}
|
154 |
-
__syncthreads();
|
155 |
-
}
|
156 |
-
if (block_size >= 256) {
|
157 |
-
if (tid < 128) {
|
158 |
-
__update(dists, dists_i, tid, tid + 128);
|
159 |
-
}
|
160 |
-
__syncthreads();
|
161 |
-
}
|
162 |
-
if (block_size >= 128) {
|
163 |
-
if (tid < 64) {
|
164 |
-
__update(dists, dists_i, tid, tid + 64);
|
165 |
-
}
|
166 |
-
__syncthreads();
|
167 |
-
}
|
168 |
-
if (block_size >= 64) {
|
169 |
-
if (tid < 32) {
|
170 |
-
__update(dists, dists_i, tid, tid + 32);
|
171 |
-
}
|
172 |
-
__syncthreads();
|
173 |
-
}
|
174 |
-
if (block_size >= 32) {
|
175 |
-
if (tid < 16) {
|
176 |
-
__update(dists, dists_i, tid, tid + 16);
|
177 |
-
}
|
178 |
-
__syncthreads();
|
179 |
-
}
|
180 |
-
if (block_size >= 16) {
|
181 |
-
if (tid < 8) {
|
182 |
-
__update(dists, dists_i, tid, tid + 8);
|
183 |
-
}
|
184 |
-
__syncthreads();
|
185 |
-
}
|
186 |
-
if (block_size >= 8) {
|
187 |
-
if (tid < 4) {
|
188 |
-
__update(dists, dists_i, tid, tid + 4);
|
189 |
-
}
|
190 |
-
__syncthreads();
|
191 |
-
}
|
192 |
-
if (block_size >= 4) {
|
193 |
-
if (tid < 2) {
|
194 |
-
__update(dists, dists_i, tid, tid + 2);
|
195 |
-
}
|
196 |
-
__syncthreads();
|
197 |
-
}
|
198 |
-
if (block_size >= 2) {
|
199 |
-
if (tid < 1) {
|
200 |
-
__update(dists, dists_i, tid, tid + 1);
|
201 |
-
}
|
202 |
-
__syncthreads();
|
203 |
-
}
|
204 |
-
|
205 |
-
old = dists_i[0];
|
206 |
-
if (tid == 0)
|
207 |
-
idxs[j] = old;
|
208 |
-
}
|
209 |
-
}
|
210 |
-
|
211 |
-
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
|
212 |
-
const float *dataset, float *temp, int *idxs, cudaStream_t stream) {
|
213 |
-
// dataset: (B, N, 3)
|
214 |
-
// tmp: (B, N)
|
215 |
-
// output:
|
216 |
-
// idx: (B, M)
|
217 |
-
|
218 |
-
cudaError_t err;
|
219 |
-
unsigned int n_threads = opt_n_threads(n);
|
220 |
-
|
221 |
-
switch (n_threads) {
|
222 |
-
case 1024:
|
223 |
-
furthest_point_sampling_kernel<1024><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
224 |
-
case 512:
|
225 |
-
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
226 |
-
case 256:
|
227 |
-
furthest_point_sampling_kernel<256><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
228 |
-
case 128:
|
229 |
-
furthest_point_sampling_kernel<128><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
230 |
-
case 64:
|
231 |
-
furthest_point_sampling_kernel<64><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
232 |
-
case 32:
|
233 |
-
furthest_point_sampling_kernel<32><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
234 |
-
case 16:
|
235 |
-
furthest_point_sampling_kernel<16><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
236 |
-
case 8:
|
237 |
-
furthest_point_sampling_kernel<8><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
238 |
-
case 4:
|
239 |
-
furthest_point_sampling_kernel<4><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
240 |
-
case 2:
|
241 |
-
furthest_point_sampling_kernel<2><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
242 |
-
case 1:
|
243 |
-
furthest_point_sampling_kernel<1><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
244 |
-
default:
|
245 |
-
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
|
246 |
-
}
|
247 |
-
|
248 |
-
err = cudaGetLastError();
|
249 |
-
if (cudaSuccess != err) {
|
250 |
-
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
251 |
-
exit(-1);
|
252 |
-
}
|
253 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/pointnet2/src/sampling_gpu.h
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
#ifndef _SAMPLING_GPU_H
|
2 |
-
#define _SAMPLING_GPU_H
|
3 |
-
|
4 |
-
#include <torch/serialize/tensor.h>
|
5 |
-
#include <ATen/cuda/CUDAContext.h>
|
6 |
-
#include<vector>
|
7 |
-
|
8 |
-
|
9 |
-
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
|
10 |
-
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
|
11 |
-
|
12 |
-
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
|
13 |
-
const float *points, const int *idx, float *out, cudaStream_t stream);
|
14 |
-
|
15 |
-
|
16 |
-
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
|
17 |
-
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
|
18 |
-
|
19 |
-
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
|
20 |
-
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
|
21 |
-
|
22 |
-
|
23 |
-
int furthest_point_sampling_wrapper(int b, int n, int m,
|
24 |
-
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor);
|
25 |
-
|
26 |
-
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
|
27 |
-
const float *dataset, float *temp, int *idxs, cudaStream_t stream);
|
28 |
-
|
29 |
-
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|