Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -83,6 +83,10 @@ def load_rgbx(image_path, x_image_path):
|
|
83 |
image = torch.stack([image, x_image], dim=0)
|
84 |
return image
|
85 |
|
|
|
|
|
|
|
|
|
86 |
def model_worker(
|
87 |
rank: int, args: argparse.Namespace, barrier: mp.Barrier,
|
88 |
request_queue: mp.Queue, response_queue: Optional[mp.Queue] = None,
|
@@ -135,6 +139,8 @@ def model_worker(
|
|
135 |
barrier.wait()
|
136 |
|
137 |
while True:
|
|
|
|
|
138 |
img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, temperature, top_p, modality = request_queue.get()
|
139 |
if 'image' in modality and img_path is not None:
|
140 |
image = Image.open(img_path).convert('RGB')
|
@@ -217,6 +223,10 @@ def gradio_worker(
|
|
217 |
return "", chatbot + [[msg, None]]
|
218 |
|
219 |
def stream_model_output(img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, gen_t, top_p, modality):
|
|
|
|
|
|
|
|
|
220 |
for queue in request_queues:
|
221 |
queue.put((img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, gen_t, top_p, modality))
|
222 |
while True:
|
@@ -368,7 +378,6 @@ def gradio_worker(
|
|
368 |
minimum=0, maximum=1, value=0.75, interactive=True,
|
369 |
label="Top-p",
|
370 |
)
|
371 |
-
gr.Markdown("Note: We are fixing a bug in multi-user session control.")
|
372 |
|
373 |
img_tab.select(partial(change_modality, 'image'), [], [modality])
|
374 |
video_tab.select(partial(change_modality, 'video'), [], [modality])
|
|
|
83 |
image = torch.stack([image, x_image], dim=0)
|
84 |
return image
|
85 |
|
86 |
+
|
87 |
+
class Ready: pass
|
88 |
+
|
89 |
+
|
90 |
def model_worker(
|
91 |
rank: int, args: argparse.Namespace, barrier: mp.Barrier,
|
92 |
request_queue: mp.Queue, response_queue: Optional[mp.Queue] = None,
|
|
|
139 |
barrier.wait()
|
140 |
|
141 |
while True:
|
142 |
+
if response_queue is not None:
|
143 |
+
response_queue.put(Ready())
|
144 |
img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, temperature, top_p, modality = request_queue.get()
|
145 |
if 'image' in modality and img_path is not None:
|
146 |
image = Image.open(img_path).convert('RGB')
|
|
|
223 |
return "", chatbot + [[msg, None]]
|
224 |
|
225 |
def stream_model_output(img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, gen_t, top_p, modality):
|
226 |
+
while True:
|
227 |
+
content_piece = response_queue.get()
|
228 |
+
if isinstance(content_piece, Ready):
|
229 |
+
break
|
230 |
for queue in request_queues:
|
231 |
queue.put((img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, gen_t, top_p, modality))
|
232 |
while True:
|
|
|
378 |
minimum=0, maximum=1, value=0.75, interactive=True,
|
379 |
label="Top-p",
|
380 |
)
|
|
|
381 |
|
382 |
img_tab.select(partial(change_modality, 'image'), [], [modality])
|
383 |
video_tab.select(partial(change_modality, 'video'), [], [modality])
|