import json import os import glob import sys import time from pathlib import Path from typing import Tuple import shortuuid # from huggingface_hub import hf_hub_download from PIL import Image import gradio as gr import torch from fairscale.nn.model_parallel.initialize import initialize_model_parallel from llama import LLaMA, ModelArgs, Tokenizer, Transformer, VisionModel os.environ['CUDA_LAUNCH_BLOCKING'] = '1' PROMPT_DICT = { "prompt_input": ( "Below is an instruction that describes a task, paired with an input that provides further context. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:" ), "prompt_no_input": ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response:" ), } def setup_model_parallel() -> Tuple[int, int]: os.environ['RANK'] = '0' os.environ['WORLD_SIZE'] = '1' os.environ['MP'] = '1' os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '2223' local_rank = int(os.environ.get("LOCAL_RANK", -1)) world_size = int(os.environ.get("WORLD_SIZE", -1)) torch.distributed.init_process_group("nccl") initialize_model_parallel(world_size) torch.cuda.set_device(local_rank) # seed must be the same in all processes torch.manual_seed(1) return local_rank, world_size def load( ckpt_path: str, param_path: str, tokenizer_path: str, instruct_adapter_path: str, caption_adapter_path: str, local_rank: int, world_size: int, max_seq_len: int, max_batch_size: int, ) -> LLaMA: start_time = time.time() print("Loading") instruct_adapter_checkpoint = torch.load( instruct_adapter_path, map_location="cpu") caption_adapter_checkpoint = torch.load( caption_adapter_path, map_location="cpu") with open(param_path, "r") as f: params = json.loads(f.read()) model_args: ModelArgs = ModelArgs( max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params ) model_args.adapter_layer = int( instruct_adapter_checkpoint['adapter_query.weight'].shape[0] / model_args.adapter_len) model_args.cap_adapter_layer = int( caption_adapter_checkpoint['cap_adapter_query.weight'].shape[0] / model_args.cap_adapter_len) tokenizer = Tokenizer(model_path=tokenizer_path) model_args.vocab_size = tokenizer.n_words torch.set_default_tensor_type(torch.cuda.HalfTensor) model = Transformer(model_args) ckpt = torch.load(ckpt_path, map_location='cuda') model.load_state_dict(ckpt, strict=False) vision_model = VisionModel(model_args) torch.set_default_tensor_type(torch.FloatTensor) model.load_state_dict(instruct_adapter_checkpoint, strict=False) model.load_state_dict(caption_adapter_checkpoint, strict=False) vision_model.load_state_dict(caption_adapter_checkpoint, strict=False) generator = LLaMA(model, tokenizer, vision_model) print(f"Loaded in {time.time() - start_time:.2f} seconds") return generator def instruct_generate( instruct: str, input: str = 'none', max_gen_len=512, temperature: float = 0.1, top_p: float = 0.75, ): if input == 'none': prompt = PROMPT_DICT['prompt_no_input'].format_map( {'instruction': instruct, 'input': ''}) else: prompt = PROMPT_DICT['prompt_input'].format_map( {'instruction': instruct, 'input': input}) results = generator.generate( [prompt], max_gen_len=max_gen_len, temperature=temperature, top_p=top_p ) result = results[0].strip() # print(result) return result ckpt_path = "/data1/llma/7B/consolidated.00.pth" param_path = "/data1/llma/7B/params.json" tokenizer_path = "/data1/llma/tokenizer.model" instruct_adapter_path = "llama_adapter_len10_layer30_release.pth" caption_adapter_path = "llama_adapter_len10_layer30_caption_vit_l.pth" max_seq_len = 512 max_batch_size = 32 local_rank, world_size = setup_model_parallel() if local_rank > 0: sys.stdout = open(os.devnull, "w") generator = load( ckpt_path, param_path, tokenizer_path, instruct_adapter_path, caption_adapter_path, local_rank, world_size, max_seq_len, max_batch_size ) answer_data = [] for line in open('question.jsonl').readlines(): line = json.loads(line) question_text = line["text"] answer = { "answer_id": shortuuid.uuid(), "model_id": "LLaMA-Adapter", "question_id": line["question_id"], "question_text": question_text, "text": '', "metadata": {} } answer_data.append(answer) prompts = [PROMPT_DICT['prompt_no_input'].format_map({'instruction': x['question_text']}) for x in answer_data] results = [] result = generator.generate(prompts[:32], max_gen_len=512, temperature=0.1, top_p=0.75) results.extend(result) result = generator.generate(prompts[32:64], max_gen_len=512, temperature=0.1, top_p=0.75) results.extend(result) result = generator.generate(prompts[64:], max_gen_len=512, temperature=0.1, top_p=0.75) results.extend(result) for i in range(len(answer_data)): answer_i = answer_data[i] answer_i['text'] = results[i].strip() del answer_i['question_text'] answer_data[i] = answer_i with open('llama_adapter_7b.json', 'w') as f: f.write("\n".join([json.dumps(x) for x in answer_data]))