import torch import torch.nn as nn import torch.nn.functional as F from . import pointnet2_utils from . import pytorch_utils as pt_utils from typing import List class _PointnetSAModuleBase(nn.Module): def __init__(self): super().__init__() self.npoint = None self.groupers = None self.mlps = None self.pool_method = 'max_pool' def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor): """ :param xyz: (B, N, 3) tensor of the xyz coordinates of the features :param features: (B, N, C) tensor of the descriptors of the the features :param new_xyz: :return: new_xyz: (B, npoint, 3) tensor of the new features' xyz new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors """ new_features_list = [] xyz_flipped = xyz.transpose(1, 2).contiguous() if new_xyz is None: new_xyz = pointnet2_utils.gather_operation( xyz_flipped, pointnet2_utils.furthest_point_sample(xyz, self.npoint) ).transpose(1, 2).contiguous() if self.npoint is not None else None for i in range(len(self.groupers)): new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample) new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint, nsample) if self.pool_method == 'max_pool': new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) elif self.pool_method == 'avg_pool': new_features = F.avg_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) else: raise NotImplementedError new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint) new_features_list.append(new_features) return new_xyz, torch.cat(new_features_list, dim=1) class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method class PointnetSAModule(PointnetSAModuleMSG): """Pointnet set abstraction layer""" def __init__(self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None, bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param mlp: list of int, spec of the pointnet before the global max_pool :param npoint: int, number of features :param radius: float, radius of ball :param nsample: int, number of samples in the ball query :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__( mlps=[mlp], npoint=npoint, radii=[radius], nsamples=[nsample], bn=bn, use_xyz=use_xyz, pool_method=pool_method, instance_norm=instance_norm ) class PointnetFPModule(nn.Module): r"""Propigates the features of one set to another""" def __init__(self, *, mlp: List[int], bn: bool = True): """ :param mlp: list of int :param bn: whether to use batchnorm """ super().__init__() self.mlp = pt_utils.SharedMLP(mlp, bn=bn) def forward( self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor ) -> torch.Tensor: """ :param unknown: (B, n, 3) tensor of the xyz positions of the unknown features :param known: (B, m, 3) tensor of the xyz positions of the known features :param unknow_feats: (B, C1, n) tensor of the features to be propigated to :param known_feats: (B, C2, m) tensor of features to be propigated :return: new_features: (B, mlp[-1], n) tensor of the features of the unknown features """ if known is not None: dist, idx = pointnet2_utils.three_nn(unknown, known) dist_recip = 1.0 / (dist + 1e-8) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = dist_recip / norm interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight) else: interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1)) if unknow_feats is not None: new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n) else: new_features = interpolated_feats new_features = new_features.unsqueeze(-1) new_features = self.mlp(new_features) return new_features.squeeze(-1) if __name__ == "__main__": pass