File size: 6,551 Bytes
3c55139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from .. import models
from ..models import register


@register("bottleneck")
class Bottleneck(nn.Module):
    def __init__(
        self,
        bottleneck_dim: int,
        input_dim: int,
        output_dim: int,
        token_nums: int,
        regularizer=None,
        **kwargs
    ):  
        super().__init__()
        self.token_nums = token_nums
        self.input_dim = input_dim
        self.output_dim = output_dim
        if bottleneck_dim > 0:
            self.bottleneck_dim = bottleneck_dim
        else:
            assert self.input_dim == self.output_dim, "input_dim and output_dim must be the same when bottleneck_dim is not specified"
            self.bottleneck_dim = self.input_dim
        
        self.project_dim = self.bottleneck_dim

        if self.bottleneck_dim > 0:
            self.in_linear = nn.Linear(self.input_dim, self.project_dim)
            self.out_linear = nn.Linear(self.bottleneck_dim, self.output_dim)
        else:
            self.in_linear = self.out_linear = lambda x: x
        
        regularizer['args']['dim'] = self.bottleneck_dim
        regularizer['args']['token_nums'] = self.token_nums
        self.regularizer = models.make(regularizer)

    def project_in(self, x):
        assert len(x.shape) == 3, "Input shape must be (batch, n_tokens, e_dim)"
        z = self.in_linear(x)
        return z

    def project_out(self, z_cat):
        z = self.out_linear(z_cat)
        return z

    def decode(self, bottleneck_rep):
        regularized_z = self.regularizer.decode(bottleneck_rep)
        return self.project_out(regularized_z)

    def forward(self, x):  
        z = self.project_in(x)
        projected_z = z
        regularized_output = self.regularizer(z)
        x_hat = self.project_out(regularized_output['regularized_z'])
        bottleneck_rep = regularized_output.pop('bottleneck_rep')
        return {
            'output': x_hat,
            'bottleneck_rep': bottleneck_rep,
            'projected_z': projected_z,
            **regularized_output,
        }


@register("simvq")
class SimVectorQuantizer(nn.Module):
    def __init__(
        self,
        dim,
        codebook_size,
        l2_normalized=False,
        same_index_shape=True,
        stochastic=False,
        stochastic_temperature=1.0,
        **kwargs,
    ):
        super().__init__()
        self.codebook_size = codebook_size
        self.dim = dim
        assert isinstance(l2_normalized, bool)
        self.l2_normalized = l2_normalized
        self.stochastic = stochastic
        self.eval_deterministic = False
        self.default_stochastic_temperature = stochastic_temperature
        
        if self.stochastic:
            if stochastic_temperature > 0: # fixed temperature
                self.stochastic_temperature_inv = 1 / stochastic_temperature
            else: # set stochastic_temperature < 0 to use learnable temperature
                self.stochastic_temperature_inv = nn.Parameter(torch.tensor(10.0))

        # for clear inference code, we remove the codebook init from LLM's embedding
        self.embedding = nn.Embedding(self.codebook_size, self.dim)
        self.embedding_proj = nn.Linear(self.dim, self.dim)

        self.same_index_shape = same_index_shape

    def set_eval_deterministic(self, deterministic=True):
        self.eval_deterministic = deterministic

    def set_stochastic_temperature(self, temperature):
        self.stochastic_temperature_inv = 1 / temperature

    @torch.autocast(device_type='cuda', enabled=False)
    def get_emb(self):
        emb = self.embedding_proj(self.embedding.weight)
        if self.l2_normalized:
            emb = F.normalize(emb, p=2, dim=-1)
        # assert emb.dtype == torch.float32, f"Embedding weight dtype is {emb.dtype}, expected float32"
        return emb

    @torch.autocast(device_type='cuda', enabled=False)
    def forward(self, z):
        emb = self.get_emb()
        z = z.to(emb)
        # z = z.float()
        assert len(z.shape) == 3, "Input shape must be (batch, n_tokens, e_dim)"
        if self.l2_normalized:
            z = F.normalize(z, p=2, dim=-1)

        z_flattened = rearrange(z, 'b n d -> (b n) d')

        if self.stochastic:
            # sample the softmaxed cosine similarity
            assert self.l2_normalized, "Stochastic sampling requires l2 normalization"
            cos_sim = torch.einsum("bd,nd->bn", z_flattened, emb)
            probs = F.softmax(cos_sim * self.stochastic_temperature_inv, dim=-1)
            if self.eval_deterministic and not self.training:
                q_indices = torch.argmax(probs, dim=-1)
            else:
                q_indices = torch.multinomial(probs, 1).squeeze(-1)
        else:
            d = (
                torch.sum(z_flattened**2, dim=1, keepdim=True)
                + torch.sum(emb**2, dim=1)
                - 2
                * torch.einsum(
                    "bd,dn->bn", z_flattened, rearrange(emb, "n d -> d n")
                )
            )
            q_indices = torch.argmin(d, dim=1)

        quantized = F.embedding(q_indices, emb, self.embedding.padding_idx, self.embedding.max_norm,
            self.embedding.norm_type, self.embedding.scale_grad_by_freq, self.embedding.sparse).view(z.shape)  # (b, n, d)
        
        # preserve gradients
        quantized = z + (quantized - z).detach()

        if self.same_index_shape:
            q_indices = q_indices.reshape(quantized.shape[0], quantized.shape[1])

        return_dict = {
            'unregularized_z': z, # but l2 normalized if l2_normalized=True
            'emb': emb, # but l2 normalized if l2_normalized=True
            'regularized_z': quantized,
            'bottleneck_rep': q_indices
        }
        return return_dict
    
    def get_codebook_entry(self, indices, shape=None):
        # shape specifying (batch, height, width, channel)
        indices_shape = indices.shape
        indices_flatten = rearrange(indices, '... -> (...)')

        # get quantized latent vectors
        emb = self.get_emb()
        z_q = F.embedding(indices_flatten, emb)
        # z_q = self.embedding(indices_flatten)
        if self.l2_normalized:
            z_q = F.normalize(z_q, p=2, dim=-1)

        if shape is not None:
            z_q = z_q.reshape(shape)
        else:
            z_q = z_q.reshape([*indices_shape, self.dim])
        return z_q

    def decode(self, indices):
        return self.get_codebook_entry(indices)