Spaces:
Sleeping
Sleeping
import copy | |
import inspect | |
import torch | |
models = {} | |
def register(name): | |
def decorator(cls): | |
models[name] = cls | |
return cls | |
return decorator | |
def make(model_spec, args=None, load_sd=False) -> torch.nn.Module: | |
if args is not None: | |
model_args = copy.deepcopy(model_spec['args']) | |
model_args.update(args) | |
else: | |
model_args = model_spec['args'] | |
model_params = inspect.signature(models[model_spec['name']]).parameters | |
if 'kwargs' not in model_params: | |
model_args = {k: v for k, v in model_args.items() if k in model_params} | |
model = models[model_spec['name']](**model_args) | |
if load_sd: | |
if ('abs_pe' in model_spec['sd']) and hasattr(model, 'abs_pe') and model_spec['sd']['abs_pe'].shape != model.abs_pe.shape: | |
del model_spec['sd']['abs_pe'] | |
msg = model.load_state_dict(model_spec['sd'], strict=False) | |
print(msg) | |
return model | |