interface
Browse files
app.py
CHANGED
|
@@ -12,15 +12,13 @@ def mean_pooling(model_output, attention_mask):
|
|
| 12 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 13 |
|
| 14 |
|
| 15 |
-
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
| 17 |
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
| 18 |
|
| 19 |
|
| 20 |
-
|
| 21 |
-
def Bemenet(bemenet):
|
| 22 |
# Tokenize sentences
|
| 23 |
-
encoded_input = tokenizer([
|
| 24 |
|
| 25 |
# Compute token embeddings
|
| 26 |
with torch.no_grad():
|
|
@@ -34,8 +32,8 @@ def Bemenet(bemenet):
|
|
| 34 |
|
| 35 |
|
| 36 |
interface = gr.Interface(fn=Bemenet,
|
| 37 |
-
title="
|
| 38 |
-
description="
|
| 39 |
inputs="text",
|
| 40 |
outputs="text")
|
| 41 |
|
|
|
|
| 12 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 13 |
|
| 14 |
|
|
|
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
| 16 |
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
| 17 |
|
| 18 |
|
| 19 |
+
def Bemenet(input_string):
|
|
|
|
| 20 |
# Tokenize sentences
|
| 21 |
+
encoded_input = tokenizer([input_string], padding=True, truncation=True, return_tensors='pt')
|
| 22 |
|
| 23 |
# Compute token embeddings
|
| 24 |
with torch.no_grad():
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
interface = gr.Interface(fn=Bemenet,
|
| 35 |
+
title="Beágyazások",
|
| 36 |
+
description="Az itt megosztott példa mondatokhoz készít beágyazásokat (embedding). A bal oldali input mezőbe beírt mondat beágyazása a jobb oldali szöveges mezőben jelenik meg.",
|
| 37 |
inputs="text",
|
| 38 |
outputs="text")
|
| 39 |
|