Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
#from streamlit_datalist import stDatalist
|
3 |
+
from utils import convert_to_base64, convert_to_html
|
4 |
+
import requests
|
5 |
+
|
6 |
+
IP = '127.0.0.1'
|
7 |
+
PORT= 8080
|
8 |
+
url = f'http://{IP}:{PORT}/predictions/model'
|
9 |
+
headers = {'Content-Type': 'application/json'}
|
10 |
+
st.set_page_config(page_title="AWS Inferentia2 Demo", layout="wide")
|
11 |
+
#st.set_page_config(layout="wide")
|
12 |
+
|
13 |
+
st.title("Multimodal Model on AWS Inf2")
|
14 |
+
st.subheader("LLaVA-1.6-Mistral-7B")
|
15 |
+
|
16 |
+
|
17 |
+
def upload_image():
|
18 |
+
image_list=["./images/view.jpg",
|
19 |
+
"./images/cat.jpg",
|
20 |
+
"./images/olympic.jpg",
|
21 |
+
"./images/usa.jpg",
|
22 |
+
"./images/box.jpg"]
|
23 |
+
name_list=["view(https://llava-vl.github.io/static/images/view.jpg)",
|
24 |
+
"cat",
|
25 |
+
"paris 2024",
|
26 |
+
"statue of liberty",
|
27 |
+
"box(from my camera)"]
|
28 |
+
images_all = dict(zip(name_list, image_list))
|
29 |
+
|
30 |
+
user_option = st.selectbox("Select a preset image", ["–Select–"] + name_list)
|
31 |
+
print(user_option)
|
32 |
+
if user_option!="–Select–":
|
33 |
+
image_names=[images_all[user_option]]
|
34 |
+
else:
|
35 |
+
image_names=[]
|
36 |
+
|
37 |
+
st.text("OR")
|
38 |
+
|
39 |
+
images = st.file_uploader("Upload an image to chat about", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
40 |
+
#print(images)
|
41 |
+
# assert max number of images, e.g. 1
|
42 |
+
assert len(images) <= 1, (st.error("Please upload at most 1 image"), st.stop())
|
43 |
+
|
44 |
+
if images or image_names:
|
45 |
+
if images:
|
46 |
+
image_names=[]
|
47 |
+
# convert images to base64
|
48 |
+
images_b64 = []
|
49 |
+
for image in images+image_names:
|
50 |
+
image_b64 = convert_to_base64(image)
|
51 |
+
images_b64.append(image_b64)
|
52 |
+
|
53 |
+
# display images in multiple columns
|
54 |
+
cols = st.columns(len(images_b64)) ##only process first image
|
55 |
+
for i, col in enumerate(cols):
|
56 |
+
col.markdown(f"**Image {i+1}**")
|
57 |
+
col.markdown(convert_to_html(images_b64[i]), unsafe_allow_html=True)
|
58 |
+
break #only process first image
|
59 |
+
st.markdown("---")
|
60 |
+
return images_b64[0] #only process first image
|
61 |
+
st.stop()
|
62 |
+
|
63 |
+
|
64 |
+
@st.cache_data(show_spinner=False)
|
65 |
+
def ask_llm(prompt, byte_image):
|
66 |
+
payload = {
|
67 |
+
"prompt":prompt,
|
68 |
+
"image": byte_image,
|
69 |
+
"parameters": {
|
70 |
+
"top_k": 100,
|
71 |
+
"top_p": 0.1,
|
72 |
+
"temperature": 0.2,
|
73 |
+
}
|
74 |
+
}
|
75 |
+
response = requests.post(url, json=payload, headers=headers)
|
76 |
+
|
77 |
+
return response.text
|
78 |
+
|
79 |
+
def app():
|
80 |
+
st.markdown("---")
|
81 |
+
c1, c2 = st.columns(2)
|
82 |
+
with c2:
|
83 |
+
image_b64 = upload_image()
|
84 |
+
with c1:
|
85 |
+
question = st.chat_input("Ask a question about this image")
|
86 |
+
|
87 |
+
if not question: st.stop()
|
88 |
+
with c1:
|
89 |
+
with st.chat_message("question"):
|
90 |
+
st.markdown(question, unsafe_allow_html=True)
|
91 |
+
with st.spinner("Thinking..."):
|
92 |
+
res = ask_llm(question, image_b64)
|
93 |
+
with st.chat_message("response"):
|
94 |
+
st.write(res)
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
app()
|