Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
|
6 |
model_name = "Writer/palmyra-small"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -9,47 +9,18 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
10 |
|
11 |
def get_movie_info(movie_title):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Make a search query to TMDb
|
16 |
-
params = {
|
17 |
-
"api_key": api_key,
|
18 |
-
"query": movie_title,
|
19 |
-
"language": "en-US",
|
20 |
-
"page": 1,
|
21 |
-
}
|
22 |
-
|
23 |
-
try:
|
24 |
-
search_response = requests.get(search_url, params=params)
|
25 |
-
search_data = search_response.json()
|
26 |
-
|
27 |
-
# Check if any results are found
|
28 |
-
if search_data.get("results"):
|
29 |
-
movie_id = search_data["results"][0]["id"]
|
30 |
-
|
31 |
-
# Fetch detailed information using the movie ID
|
32 |
-
details_url = f"https://api.themoviedb.org/3/movie/{movie_id}"
|
33 |
-
details_params = {
|
34 |
-
"api_key": api_key,
|
35 |
-
"language": "en-US",
|
36 |
-
}
|
37 |
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
else:
|
49 |
-
return "Movie not found"
|
50 |
-
|
51 |
-
except Exception as e:
|
52 |
-
return f"Error: {e}"
|
53 |
|
54 |
def generate_response(prompt):
|
55 |
input_text_template = (
|
@@ -59,7 +30,7 @@ def generate_response(prompt):
|
|
59 |
"ASSISTANT:"
|
60 |
)
|
61 |
|
62 |
-
# Call the get_movie_info function
|
63 |
movie_info = get_movie_info(prompt)
|
64 |
|
65 |
# Concatenate the movie info with the input template
|
@@ -83,3 +54,4 @@ def generate_response(prompt):
|
|
83 |
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", live=True)
|
84 |
iface.launch()
|
85 |
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
+
from datasets import load_dataset
|
5 |
|
6 |
model_name = "Writer/palmyra-small"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
10 |
|
11 |
def get_movie_info(movie_title):
|
12 |
+
# Load the IMDb dataset
|
13 |
+
imdb = load_dataset("imdb")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Search for the movie in the IMDb dataset
|
16 |
+
results = imdb['title'].filter(lambda x: movie_title.lower() in x.lower())
|
17 |
|
18 |
+
# Check if any results are found
|
19 |
+
if len(results) > 0:
|
20 |
+
movie = results[0]
|
21 |
+
return f"Title: {movie['title']}, Year: {movie['year']}, Genre: {', '.join(movie['genre'])}"
|
22 |
+
else:
|
23 |
+
return "Movie not found"
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def generate_response(prompt):
|
26 |
input_text_template = (
|
|
|
30 |
"ASSISTANT:"
|
31 |
)
|
32 |
|
33 |
+
# Call the get_movie_info function
|
34 |
movie_info = get_movie_info(prompt)
|
35 |
|
36 |
# Concatenate the movie info with the input template
|
|
|
54 |
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", live=True)
|
55 |
iface.launch()
|
56 |
|
57 |
+
|