File size: 9,049 Bytes
da8e0c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
#!/bin/env python3
"""
Real-time ASR using microphone
"""
import argparse
import logging
import sherpa_onnx
import os
import time
import struct
import asyncio
import soundfile
try:
import pyaudio
except ImportError:
raise ImportError('Please install pyaudio with `pip install pyaudio`')
logger = logging.getLogger(__name__)
SAMPLE_RATE = 16000
pactx = pyaudio.PyAudio()
models_root: str = None
num_threads: int = 1
def create_zipformer(args) -> sherpa_onnx.OnlineRecognizer:
d = os.path.join(
models_root, 'sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20')
encoder = os.path.join(d, "encoder-epoch-99-avg-1.onnx")
decoder = os.path.join(d, "decoder-epoch-99-avg-1.onnx")
joiner = os.path.join(d, "joiner-epoch-99-avg-1.onnx")
tokens = os.path.join(d, "tokens.txt")
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder,
decoder=decoder,
joiner=joiner,
provider=args.provider,
num_threads=num_threads,
sample_rate=SAMPLE_RATE,
feature_dim=80,
enable_endpoint_detection=True,
rule1_min_trailing_silence=2.4,
rule2_min_trailing_silence=1.2,
rule3_min_utterance_length=20, # it essentially disables this rule
)
return recognizer
def create_sensevoice(args) -> sherpa_onnx.OfflineRecognizer:
model = os.path.join(
models_root, 'sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17', 'model.onnx')
tokens = os.path.join(
models_root, 'sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17', 'tokens.txt')
recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
model=model,
tokens=tokens,
num_threads=num_threads,
use_itn=True,
debug=0,
language=args.lang,
)
return recognizer
async def run_online(buf, recognizer):
stream = recognizer.create_stream()
last_result = ""
segment_id = 0
logger.info('Start real-time recognizer')
while True:
samples = await buf.get()
stream.accept_waveform(SAMPLE_RATE, samples)
while recognizer.is_ready(stream):
recognizer.decode_stream(stream)
is_endpoint = recognizer.is_endpoint(stream)
result = recognizer.get_result(stream)
if result and (last_result != result):
last_result = result
logger.info(f' > {segment_id}:{result}')
if is_endpoint:
if result:
logger.info(f'{segment_id}: {result}')
segment_id += 1
recognizer.reset(stream)
async def run_offline(buf, recognizer):
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = os.path.join(
models_root, 'silero_vad', 'silero_vad.onnx')
config.silero_vad.min_silence_duration = 0.25
config.sample_rate = SAMPLE_RATE
vad = sherpa_onnx.VoiceActivityDetector(
config, buffer_size_in_seconds=100)
logger.info('Start offline recognizer with VAD')
texts = []
while True:
samples = await buf.get()
vad.accept_waveform(samples)
while not vad.empty():
stream = recognizer.create_stream()
stream.accept_waveform(SAMPLE_RATE, vad.front.samples)
vad.pop()
recognizer.decode_stream(stream)
text = stream.result.text.strip().lower()
if len(text):
idx = len(texts)
texts.append(text)
logger.info(f"{idx}: {text}")
async def handle_asr(args):
action_func = None
if args.model == 'zipformer':
recognizer = create_zipformer(args)
action_func = run_online
elif args.model == 'sensevoice':
recognizer = create_sensevoice(args)
action_func = run_offline
else:
raise ValueError(f'Unknown model: {args.model}')
buf = asyncio.Queue()
recorder_task = asyncio.create_task(run_record(buf))
asr_task = asyncio.create_task(action_func(buf, recognizer))
await asyncio.gather(asr_task, recorder_task)
async def handle_tts(args):
model = os.path.join(
models_root, 'vits-melo-tts-zh_en', 'model.onnx')
lexicon = os.path.join(
models_root, 'vits-melo-tts-zh_en', 'lexicon.txt')
dict_dir = os.path.join(
models_root, 'vits-melo-tts-zh_en', 'dict')
tokens = os.path.join(
models_root, 'vits-melo-tts-zh_en', 'tokens.txt')
tts_config = sherpa_onnx.OfflineTtsConfig(
model=sherpa_onnx.OfflineTtsModelConfig(
vits=sherpa_onnx.OfflineTtsVitsModelConfig(
model=model,
lexicon=lexicon,
dict_dir=dict_dir,
tokens=tokens,
),
provider=args.provider,
debug=0,
num_threads=num_threads,
),
max_num_sentences=args.max_num_sentences,
)
if not tts_config.validate():
raise ValueError("Please check your config")
tts = sherpa_onnx.OfflineTts(tts_config)
start = time.time()
audio = tts.generate(args.text, sid=args.sid,
speed=args.speed)
elapsed_seconds = time.time() - start
audio_duration = len(audio.samples) / audio.sample_rate
real_time_factor = elapsed_seconds / audio_duration
if args.output:
logger.info(f"Saved to {args.output}")
soundfile.write(
args.output,
audio.samples,
samplerate=audio.sample_rate,
subtype="PCM_16",
)
logger.info(f"The text is '{args.text}'")
logger.info(f"Elapsed seconds: {elapsed_seconds:.3f}")
logger.info(f"Audio duration in seconds: {audio_duration:.3f}")
logger.info(
f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}")
async def run_record(buf: asyncio.Queue[list[float]]):
loop = asyncio.get_event_loop()
def on_input(in_data, frame_count, time_info, status):
samples = [
v/32768.0 for v in list(struct.unpack('<' + 'h' * frame_count, in_data))]
loop.create_task(buf.put(samples))
return (None, pyaudio.paContinue)
frame_size = 320
recorder = pactx.open(format=pyaudio.paInt16, channels=1,
rate=SAMPLE_RATE, input=True,
frames_per_buffer=frame_size,
stream_callback=on_input)
recorder.start_stream()
logger.info('Start recording')
while recorder.is_active():
await asyncio.sleep(0.1)
async def main():
parser = argparse.ArgumentParser()
parser.add_argument('--provider', default='cpu',
help='onnxruntime provider, default is cpu, use cuda for GPU')
subparsers = parser.add_subparsers(help='commands help')
asr_parser = subparsers.add_parser('asr', help='run asr mode')
asr_parser.add_argument('--model', default='zipformer',
help='model name, default is zipformer')
asr_parser.add_argument('--lang', default='zh',
help='language, default is zh')
asr_parser.set_defaults(func=handle_asr)
tts_parser = subparsers.add_parser('tts', help='run tts mode')
tts_parser.add_argument('--sid', type=int, default=0, help="""Speaker ID. Used only for multi-speaker models, e.g.
models trained using the VCTK dataset. Not used for single-speaker
models, e.g., models trained using the LJ speech dataset.
""")
tts_parser.add_argument('--output', type=str, default='output.wav',
help='output file name, default is output.wav')
tts_parser.add_argument(
"--speed",
type=float,
default=1.0,
help="Speech speed. Larger->faster; smaller->slower",
)
tts_parser.add_argument(
"--max-num-sentences",
type=int,
default=2,
help="""Max number of sentences in a batch to avoid OOM if the input
text is very long. Set it to -1 to process all the sentences in a
single batch. A smaller value does not mean it is slower compared
to a larger one on CPU.
""",
)
tts_parser.add_argument(
"text",
type=str,
help="The input text to generate audio for",
)
tts_parser.set_defaults(func=handle_tts)
args = parser.parse_args()
if hasattr(args, 'func'):
await args.func(args)
else:
parser.print_help()
if __name__ == '__main__':
logging.basicConfig(
format='%(levelname)s: %(asctime)s %(name)s:%(lineno)s %(message)s')
logging.getLogger().setLevel(logging.INFO)
painfo = pactx.get_default_input_device_info()
assert painfo['maxInputChannels'] >= 1, 'No input device'
logger.info('Default input device: %s', painfo['name'])
for d in ['.', '..', '../..']:
if os.path.isdir(f'{d}/models'):
models_root = f'{d}/models'
break
assert models_root, 'Could not find models directory'
asyncio.run(main())
|