File size: 9,049 Bytes
da8e0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/bin/env python3
"""
    Real-time ASR using microphone
"""

import argparse
import logging
import sherpa_onnx
import os
import time
import struct
import asyncio
import soundfile

try:
    import pyaudio
except ImportError:
    raise ImportError('Please install pyaudio with `pip install pyaudio`')

logger = logging.getLogger(__name__)
SAMPLE_RATE = 16000

pactx = pyaudio.PyAudio()
models_root: str = None
num_threads: int = 1


def create_zipformer(args) -> sherpa_onnx.OnlineRecognizer:
    d = os.path.join(
        models_root, 'sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20')
    encoder = os.path.join(d, "encoder-epoch-99-avg-1.onnx")
    decoder = os.path.join(d, "decoder-epoch-99-avg-1.onnx")
    joiner = os.path.join(d, "joiner-epoch-99-avg-1.onnx")
    tokens = os.path.join(d, "tokens.txt")

    recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder,
        decoder=decoder,
        joiner=joiner,
        provider=args.provider,
        num_threads=num_threads,
        sample_rate=SAMPLE_RATE,
        feature_dim=80,
        enable_endpoint_detection=True,
        rule1_min_trailing_silence=2.4,
        rule2_min_trailing_silence=1.2,
        rule3_min_utterance_length=20,  # it essentially disables this rule
    )
    return recognizer


def create_sensevoice(args) -> sherpa_onnx.OfflineRecognizer:
    model = os.path.join(
        models_root, 'sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17', 'model.onnx')
    tokens = os.path.join(
        models_root, 'sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17', 'tokens.txt')
    recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
        model=model,
        tokens=tokens,
        num_threads=num_threads,
        use_itn=True,
        debug=0,
        language=args.lang,
    )
    return recognizer


async def run_online(buf, recognizer):
    stream = recognizer.create_stream()
    last_result = ""
    segment_id = 0
    logger.info('Start real-time recognizer')
    while True:
        samples = await buf.get()
        stream.accept_waveform(SAMPLE_RATE, samples)
        while recognizer.is_ready(stream):
            recognizer.decode_stream(stream)

        is_endpoint = recognizer.is_endpoint(stream)
        result = recognizer.get_result(stream)

        if result and (last_result != result):
            last_result = result
            logger.info(f' > {segment_id}:{result}')

        if is_endpoint:
            if result:
                logger.info(f'{segment_id}: {result}')
                segment_id += 1
            recognizer.reset(stream)


async def run_offline(buf, recognizer):
    config = sherpa_onnx.VadModelConfig()
    config.silero_vad.model = os.path.join(
        models_root, 'silero_vad', 'silero_vad.onnx')
    config.silero_vad.min_silence_duration = 0.25
    config.sample_rate = SAMPLE_RATE
    vad = sherpa_onnx.VoiceActivityDetector(
        config, buffer_size_in_seconds=100)

    logger.info('Start offline recognizer with VAD')
    texts = []
    while True:
        samples = await buf.get()
        vad.accept_waveform(samples)
        while not vad.empty():
            stream = recognizer.create_stream()
            stream.accept_waveform(SAMPLE_RATE, vad.front.samples)

            vad.pop()
            recognizer.decode_stream(stream)

            text = stream.result.text.strip().lower()
            if len(text):
                idx = len(texts)
                texts.append(text)
                logger.info(f"{idx}: {text}")


async def handle_asr(args):
    action_func = None
    if args.model == 'zipformer':
        recognizer = create_zipformer(args)
        action_func = run_online
    elif args.model == 'sensevoice':
        recognizer = create_sensevoice(args)
        action_func = run_offline
    else:
        raise ValueError(f'Unknown model: {args.model}')
    buf = asyncio.Queue()
    recorder_task = asyncio.create_task(run_record(buf))
    asr_task = asyncio.create_task(action_func(buf, recognizer))
    await asyncio.gather(asr_task, recorder_task)


async def handle_tts(args):
    model = os.path.join(
        models_root, 'vits-melo-tts-zh_en', 'model.onnx')
    lexicon = os.path.join(
        models_root, 'vits-melo-tts-zh_en', 'lexicon.txt')
    dict_dir = os.path.join(
        models_root, 'vits-melo-tts-zh_en', 'dict')
    tokens = os.path.join(
        models_root, 'vits-melo-tts-zh_en', 'tokens.txt')
    tts_config = sherpa_onnx.OfflineTtsConfig(
        model=sherpa_onnx.OfflineTtsModelConfig(
            vits=sherpa_onnx.OfflineTtsVitsModelConfig(
                model=model,
                lexicon=lexicon,
                dict_dir=dict_dir,
                tokens=tokens,
            ),
            provider=args.provider,
            debug=0,
            num_threads=num_threads,
        ),
        max_num_sentences=args.max_num_sentences,
    )
    if not tts_config.validate():
        raise ValueError("Please check your config")

    tts = sherpa_onnx.OfflineTts(tts_config)

    start = time.time()
    audio = tts.generate(args.text, sid=args.sid,
                         speed=args.speed)
    elapsed_seconds = time.time() - start
    audio_duration = len(audio.samples) / audio.sample_rate
    real_time_factor = elapsed_seconds / audio_duration

    if args.output:
        logger.info(f"Saved to {args.output}")
        soundfile.write(
            args.output,
            audio.samples,
            samplerate=audio.sample_rate,
            subtype="PCM_16",
        )

    logger.info(f"The text is '{args.text}'")
    logger.info(f"Elapsed seconds: {elapsed_seconds:.3f}")
    logger.info(f"Audio duration in seconds: {audio_duration:.3f}")
    logger.info(
        f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}")


async def run_record(buf: asyncio.Queue[list[float]]):
    loop = asyncio.get_event_loop()

    def on_input(in_data, frame_count, time_info, status):
        samples = [
            v/32768.0 for v in list(struct.unpack('<' + 'h' * frame_count, in_data))]
        loop.create_task(buf.put(samples))
        return (None, pyaudio.paContinue)

    frame_size = 320
    recorder = pactx.open(format=pyaudio.paInt16, channels=1,
                          rate=SAMPLE_RATE, input=True,
                          frames_per_buffer=frame_size,
                          stream_callback=on_input)
    recorder.start_stream()
    logger.info('Start recording')

    while recorder.is_active():
        await asyncio.sleep(0.1)


async def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--provider', default='cpu',
                        help='onnxruntime provider, default is cpu, use cuda for GPU')

    subparsers = parser.add_subparsers(help='commands help')

    asr_parser = subparsers.add_parser('asr', help='run asr mode')
    asr_parser.add_argument('--model', default='zipformer',
                            help='model name, default is zipformer')
    asr_parser.add_argument('--lang',  default='zh',
                            help='language, default is zh')
    asr_parser.set_defaults(func=handle_asr)

    tts_parser = subparsers.add_parser('tts', help='run tts mode')
    tts_parser.add_argument('--sid', type=int, default=0, help="""Speaker ID. Used only for multi-speaker models, e.g.
        models trained using the VCTK dataset. Not used for single-speaker
        models, e.g., models trained using the LJ speech dataset.
        """)
    tts_parser.add_argument('--output', type=str, default='output.wav',
                            help='output file name, default is output.wav')
    tts_parser.add_argument(
        "--speed",
        type=float,
        default=1.0,
        help="Speech speed. Larger->faster; smaller->slower",
    )
    tts_parser.add_argument(
        "--max-num-sentences",
        type=int,
        default=2,
        help="""Max number of sentences in a batch to avoid OOM if the input
        text is very long. Set it to -1 to process all the sentences in a
        single batch. A smaller value does not mean it is slower compared
        to a larger one on CPU.
        """,
    )
    tts_parser.add_argument(
        "text",
        type=str,
        help="The input text to generate audio for",
    )
    tts_parser.set_defaults(func=handle_tts)

    args = parser.parse_args()

    if hasattr(args, 'func'):
        await args.func(args)
    else:
        parser.print_help()

if __name__ == '__main__':
    logging.basicConfig(
        format='%(levelname)s: %(asctime)s %(name)s:%(lineno)s %(message)s')
    logging.getLogger().setLevel(logging.INFO)
    painfo = pactx.get_default_input_device_info()
    assert painfo['maxInputChannels'] >= 1, 'No input device'
    logger.info('Default input device: %s', painfo['name'])

    for d in ['.', '..', '../..']:
        if os.path.isdir(f'{d}/models'):
            models_root = f'{d}/models'
            break
    assert models_root, 'Could not find models directory'
    asyncio.run(main())