File size: 7,544 Bytes
da8e0c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
from typing import *
import os
import time
import sherpa_onnx
import logging
import numpy as np
import asyncio
import time
import soundfile
from scipy.signal import resample
import io
import re
logger = logging.getLogger(__file__)
splitter = re.compile(r'[,,。.!?!?;;、\n]')
_tts_engines = {}
tts_configs = {
'vits-zh-hf-theresa': {
'model': 'theresa.onnx',
'lexicon': 'lexicon.txt',
'dict_dir': 'dict',
'tokens': 'tokens.txt',
'sample_rate': 22050,
# 'rule_fsts': ['phone.fst', 'date.fst', 'number.fst'],
},
'vits-melo-tts-zh_en': {
'model': 'model.onnx',
'lexicon': 'lexicon.txt',
'dict_dir': 'dict',
'tokens': 'tokens.txt',
'sample_rate': 44100,
'rule_fsts': ['phone.fst', 'date.fst', 'number.fst'],
},
}
def load_tts_model(name: str, model_root: str, provider: str, num_threads: int = 1, max_num_sentences: int = 20) -> sherpa_onnx.OfflineTtsConfig:
cfg = tts_configs[name]
fsts = []
model_dir = os.path.join(model_root, name)
for f in cfg.get('rule_fsts', ''):
fsts.append(os.path.join(model_dir, f))
tts_rule_fsts = ','.join(fsts) if fsts else ''
model_config = sherpa_onnx.OfflineTtsModelConfig(
vits=sherpa_onnx.OfflineTtsVitsModelConfig(
model=os.path.join(model_dir, cfg['model']),
lexicon=os.path.join(model_dir, cfg['lexicon']),
dict_dir=os.path.join(model_dir, cfg['dict_dir']),
tokens=os.path.join(model_dir, cfg['tokens']),
),
provider=provider,
debug=0,
num_threads=num_threads,
)
tts_config = sherpa_onnx.OfflineTtsConfig(
model=model_config,
rule_fsts=tts_rule_fsts,
max_num_sentences=max_num_sentences)
if not tts_config.validate():
raise ValueError("tts: invalid config")
return tts_config
def get_tts_engine(args) -> Tuple[sherpa_onnx.OfflineTts, int]:
sample_rate = tts_configs[args.tts_model]['sample_rate']
cache_engine = _tts_engines.get(args.tts_model)
if cache_engine:
return cache_engine, sample_rate
st = time.time()
tts_config = load_tts_model(
args.tts_model, args.models_root, args.tts_provider)
cache_engine = sherpa_onnx.OfflineTts(tts_config)
elapsed = time.time() - st
logger.info(f"tts: loaded {args.tts_model} in {elapsed:.2f}s")
_tts_engines[args.tts_model] = cache_engine
return cache_engine, sample_rate
class TTSResult:
def __init__(self, pcm_bytes: bytes, finished: bool):
self.pcm_bytes = pcm_bytes
self.finished = finished
self.progress: float = 0.0
self.elapsed: float = 0.0
self.audio_duration: float = 0.0
self.audio_size: int = 0
def to_dict(self):
return {
"progress": self.progress,
"elapsed": f'{int(self.elapsed * 1000)}ms',
"duration": f'{self.audio_duration:.2f}s',
"size": self.audio_size
}
class TTSStream:
def __init__(self, engine, sid: int, speed: float = 1.0, sample_rate: int = 16000, original_sample_rate: int = 16000):
self.engine = engine
self.sid = sid
self.speed = speed
self.outbuf: asyncio.Queue[TTSResult | None] = asyncio.Queue()
self.is_closed = False
self.target_sample_rate = sample_rate
self.original_sample_rate = original_sample_rate
def on_process(self, chunk: np.ndarray, progress: float):
if self.is_closed:
return 0
# resample to target sample rate
if self.target_sample_rate != self.original_sample_rate:
num_samples = int(
len(chunk) * self.target_sample_rate / self.original_sample_rate)
resampled_chunk = resample(chunk, num_samples)
chunk = resampled_chunk.astype(np.float32)
scaled_chunk = chunk * 32768.0
clipped_chunk = np.clip(scaled_chunk, -32768, 32767)
int16_chunk = clipped_chunk.astype(np.int16)
samples = int16_chunk.tobytes()
self.outbuf.put_nowait(TTSResult(samples, False))
return self.is_closed and 0 or 1
async def write(self, text: str, split: bool, pause: float = 0.2):
start = time.time()
if split:
texts = re.split(splitter, text)
else:
texts = [text]
audio_duration = 0.0
audio_size = 0
for idx, text in enumerate(texts):
text = text.strip()
if not text:
continue
sub_start = time.time()
audio = await asyncio.to_thread(self.engine.generate,
text, self.sid, self.speed,
self.on_process)
if not audio or not audio.sample_rate or not audio.samples:
logger.error(f"tts: failed to generate audio for "
f"'{text}' (audio={audio})")
continue
if split and idx < len(texts) - 1: # add a pause between sentences
noise = np.zeros(int(audio.sample_rate * pause))
self.on_process(noise, 1.0)
audio.samples = np.concatenate([audio.samples, noise])
audio_duration += len(audio.samples) / audio.sample_rate
audio_size += len(audio.samples)
elapsed_seconds = time.time() - sub_start
logger.info(f"tts: generated audio for '{text}', "
f"audio duration: {audio_duration:.2f}s, "
f"elapsed: {elapsed_seconds:.2f}s")
elapsed_seconds = time.time() - start
logger.info(f"tts: generated audio in {elapsed_seconds:.2f}s, "
f"audio duration: {audio_duration:.2f}s")
r = TTSResult(None, True)
r.elapsed = elapsed_seconds
r.audio_duration = audio_duration
r.progress = 1.0
r.finished = True
await self.outbuf.put(r)
async def close(self):
self.is_closed = True
self.outbuf.put_nowait(None)
logger.info("tts: stream closed")
async def read(self) -> TTSResult:
return await self.outbuf.get()
async def generate(self, text: str) -> io.BytesIO:
start = time.time()
audio = await asyncio.to_thread(self.engine.generate,
text, self.sid, self.speed)
elapsed_seconds = time.time() - start
audio_duration = len(audio.samples) / audio.sample_rate
logger.info(f"tts: generated audio in {elapsed_seconds:.2f}s, "
f"audio duration: {audio_duration:.2f}s, "
f"sample rate: {audio.sample_rate}")
if self.target_sample_rate != audio.sample_rate:
audio.samples = resample(audio.samples,
int(len(audio.samples) * self.target_sample_rate / audio.sample_rate))
audio.sample_rate = self.target_sample_rate
output = io.BytesIO()
soundfile.write(output,
audio.samples,
samplerate=audio.sample_rate,
subtype="PCM_16",
format="WAV")
output.seek(0)
return output
async def start_tts_stream(sid: int, sample_rate: int, speed: float, args) -> TTSStream:
engine, original_sample_rate = get_tts_engine(args)
return TTSStream(engine, sid, speed, sample_rate, original_sample_rate)
|