File size: 8,114 Bytes
da8e0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from typing import *
import logging
import time
import logging
import sherpa_onnx
import os
import asyncio
import numpy as np

logger = logging.getLogger(__file__)
_asr_engines = {}


class ASRResult:
    def __init__(self, text: str, finished: bool, idx: int):
        self.text = text
        self.finished = finished
        self.idx = idx

    def to_dict(self):
        return {"text": self.text, "finished": self.finished, "idx": self.idx}


class ASRStream:
    def __init__(self, recognizer: Union[sherpa_onnx.OnlineRecognizer | sherpa_onnx.OfflineRecognizer], sample_rate: int) -> None:
        self.recognizer = recognizer
        self.inbuf = asyncio.Queue()
        self.outbuf = asyncio.Queue()
        self.sample_rate = sample_rate
        self.is_closed = False
        self.online = isinstance(recognizer, sherpa_onnx.OnlineRecognizer)

    async def start(self):
        if self.online:
            asyncio.create_task(self.run_online())
        else:
            asyncio.create_task(self.run_offline())

    async def run_online(self):
        stream = self.recognizer.create_stream()
        last_result = ""
        segment_id = 0
        logger.info('asr: start real-time recognizer')
        while not self.is_closed:
            samples = await self.inbuf.get()
            stream.accept_waveform(self.sample_rate, samples)
            while self.recognizer.is_ready(stream):
                self.recognizer.decode_stream(stream)

            is_endpoint = self.recognizer.is_endpoint(stream)
            result = self.recognizer.get_result(stream)

            if result and (last_result != result):
                last_result = result
                logger.info(f' > {segment_id}:{result}')
                self.outbuf.put_nowait(
                    ASRResult(result, False, segment_id))

            if is_endpoint:
                if result:
                    logger.info(f'{segment_id}: {result}')
                    self.outbuf.put_nowait(
                        ASRResult(result, True, segment_id))
                    segment_id += 1
                self.recognizer.reset(stream)

    async def run_offline(self):
        vad = _asr_engines['vad']
        segment_id = 0
        st = None
        while not self.is_closed:
            samples = await self.inbuf.get()
            vad.accept_waveform(samples)
            while not vad.empty():
                if not st:
                    st = time.time()
                stream = self.recognizer.create_stream()
                stream.accept_waveform(self.sample_rate, vad.front.samples)

                vad.pop()
                self.recognizer.decode_stream(stream)

                result = stream.result.text.strip()
                if result:
                    duration = time.time() - st
                    logger.info(f'{segment_id}:{result} ({duration:.2f}s)')
                    self.outbuf.put_nowait(ASRResult(result, True, segment_id))
                    segment_id += 1
            st = None

    async def close(self):
        self.is_closed = True
        self.outbuf.put_nowait(None)

    async def write(self, pcm_bytes: bytes):
        pcm_data = np.frombuffer(pcm_bytes, dtype=np.int16)
        samples = pcm_data.astype(np.float32) / 32768.0
        self.inbuf.put_nowait(samples)

    async def read(self) -> ASRResult:
        return await self.outbuf.get()


def create_zipformer(samplerate: int, args) -> sherpa_onnx.OnlineRecognizer:
    d = os.path.join(
        args.models_root, 'sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20')
    if not os.path.exists(d):
        raise ValueError(f"asr: model not found {d}")

    encoder = os.path.join(d, "encoder-epoch-99-avg-1.onnx")
    decoder = os.path.join(d, "decoder-epoch-99-avg-1.onnx")
    joiner = os.path.join(d, "joiner-epoch-99-avg-1.onnx")
    tokens = os.path.join(d, "tokens.txt")

    recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder,
        decoder=decoder,
        joiner=joiner,
        provider=args.asr_provider,
        num_threads=args.threads,
        sample_rate=samplerate,
        feature_dim=80,
        enable_endpoint_detection=True,
        rule1_min_trailing_silence=2.4,
        rule2_min_trailing_silence=1.2,
        rule3_min_utterance_length=20,  # it essentially disables this rule
    )
    return recognizer


def create_sensevoice(samplerate: int, args) -> sherpa_onnx.OfflineRecognizer:
    d = os.path.join(args.models_root,
                     'sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17')

    if not os.path.exists(d):
        raise ValueError(f"asr: model not found {d}")

    recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
        model=os.path.join(d, 'model.onnx'),
        tokens=os.path.join(d, 'tokens.txt'),
        num_threads=args.threads,
        sample_rate=samplerate,
        use_itn=True,
        debug=0,
        language=args.asr_lang,
    )
    return recognizer


def create_paraformer_trilingual(samplerate: int, args) -> sherpa_onnx.OnlineRecognizer:
    d = os.path.join(
        args.models_root, 'sherpa-onnx-paraformer-trilingual-zh-cantonese-en')
    if not os.path.exists(d):
        raise ValueError(f"asr: model not found {d}")

    recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
        paraformer=os.path.join(d, 'model.onnx'),
        tokens=os.path.join(d, 'tokens.txt'),
        num_threads=args.threads,
        sample_rate=samplerate,
        debug=0,
        provider=args.asr_provider,
    )
    return recognizer


def create_paraformer_en(samplerate: int, args) -> sherpa_onnx.OnlineRecognizer:
    d = os.path.join(
        args.models_root, 'sherpa-onnx-paraformer-en')
    if not os.path.exists(d):
        raise ValueError(f"asr: model not found {d}")

    recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
        paraformer=os.path.join(d, 'model.onnx'),
        tokens=os.path.join(d, 'tokens.txt'),
        num_threads=args.threads,
        sample_rate=samplerate,
        use_itn=True,
        debug=0,
        provider=args.asr_provider,
    )
    return recognizer


def load_asr_engine(samplerate: int, args) -> sherpa_onnx.OnlineRecognizer:
    cache_engine = _asr_engines.get(args.asr_model)
    if cache_engine:
        return cache_engine
    st = time.time()
    if args.asr_model == 'zipformer-bilingual':
        cache_engine = create_zipformer(samplerate, args)
    elif args.asr_model == 'sensevoice':
        cache_engine = create_sensevoice(samplerate, args)
        _asr_engines['vad'] = load_vad_engine(samplerate, args)
    elif args.asr_model == 'paraformer-trilingual':
        cache_engine = create_paraformer_trilingual(samplerate, args)
        _asr_engines['vad'] = load_vad_engine(samplerate, args)
    elif args.asr_model == 'paraformer-en':
        cache_engine = create_paraformer_en(samplerate, args)
        _asr_engines['vad'] = load_vad_engine(samplerate, args)
    else:
        raise ValueError(f"asr: unknown model {args.asr_model}")
    _asr_engines[args.asr_model] = cache_engine
    logger.info(f"asr: engine loaded in {time.time() - st:.2f}s")
    return cache_engine


def load_vad_engine(samplerate: int, args, min_silence_duration: float = 0.25, buffer_size_in_seconds: int = 100) -> sherpa_onnx.VoiceActivityDetector:
    config = sherpa_onnx.VadModelConfig()
    d = os.path.join(args.models_root, 'silero_vad')
    if not os.path.exists(d):
        raise ValueError(f"vad: model not found {d}")

    config.silero_vad.model = os.path.join(d, 'silero_vad.onnx')
    config.silero_vad.min_silence_duration = min_silence_duration
    config.sample_rate = samplerate
    config.provider = args.asr_provider
    config.num_threads = args.threads

    vad = sherpa_onnx.VoiceActivityDetector(
        config,
        buffer_size_in_seconds=buffer_size_in_seconds)
    return vad


async def start_asr_stream(samplerate: int, args) -> ASRStream:
    """
    Start a ASR stream
    """
    stream = ASRStream(load_asr_engine(samplerate, args), samplerate)
    await stream.start()
    return stream