File size: 4,592 Bytes
bd87891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import chromadb
from chromadb import Settings
from chromadb.utils.batch_utils import create_batches

from typing import Optional

from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
    CHROMA_DATA_PATH,
    CHROMA_HTTP_HOST,
    CHROMA_HTTP_PORT,
    CHROMA_HTTP_HEADERS,
    CHROMA_HTTP_SSL,
    CHROMA_TENANT,
    CHROMA_DATABASE,
)


class ChromaClient:
    def __init__(self):
        if CHROMA_HTTP_HOST != "":
            self.client = chromadb.HttpClient(
                host=CHROMA_HTTP_HOST,
                port=CHROMA_HTTP_PORT,
                headers=CHROMA_HTTP_HEADERS,
                ssl=CHROMA_HTTP_SSL,
                tenant=CHROMA_TENANT,
                database=CHROMA_DATABASE,
                settings=Settings(allow_reset=True, anonymized_telemetry=False),
            )
        else:
            self.client = chromadb.PersistentClient(
                path=CHROMA_DATA_PATH,
                settings=Settings(allow_reset=True, anonymized_telemetry=False),
                tenant=CHROMA_TENANT,
                database=CHROMA_DATABASE,
            )

    def has_collection(self, collection_name: str) -> bool:
        # Check if the collection exists based on the collection name.
        collections = self.client.list_collections()
        return collection_name in [collection.name for collection in collections]

    def delete_collection(self, collection_name: str):
        # Delete the collection based on the collection name.
        return self.client.delete_collection(name=collection_name)

    def search(
        self, collection_name: str, vectors: list[list[float | int]], limit: int
    ) -> Optional[SearchResult]:
        # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
        collection = self.client.get_collection(name=collection_name)
        if collection:
            result = collection.query(
                query_embeddings=vectors,
                n_results=limit,
            )

            return SearchResult(
                **{
                    "ids": result["ids"],
                    "distances": result["distances"],
                    "documents": result["documents"],
                    "metadatas": result["metadatas"],
                }
            )
        return None

    def get(self, collection_name: str) -> Optional[GetResult]:
        # Get all the items in the collection.
        collection = self.client.get_collection(name=collection_name)
        if collection:
            result = collection.get()
            return GetResult(
                **{
                    "ids": [result["ids"]],
                    "documents": [result["documents"]],
                    "metadatas": [result["metadatas"]],
                }
            )
        return None

    def insert(self, collection_name: str, items: list[VectorItem]):
        # Insert the items into the collection, if the collection does not exist, it will be created.
        collection = self.client.get_or_create_collection(name=collection_name)

        ids = [item["id"] for item in items]
        documents = [item["text"] for item in items]
        embeddings = [item["vector"] for item in items]
        metadatas = [item["metadata"] for item in items]

        for batch in create_batches(
            api=self.client,
            documents=documents,
            embeddings=embeddings,
            ids=ids,
            metadatas=metadatas,
        ):
            collection.add(*batch)

    def upsert(self, collection_name: str, items: list[VectorItem]):
        # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
        collection = self.client.get_or_create_collection(name=collection_name)

        ids = [item["id"] for item in items]
        documents = [item["text"] for item in items]
        embeddings = [item["vector"] for item in items]
        metadatas = [item["metadata"] for item in items]

        collection.upsert(
            ids=ids, documents=documents, embeddings=embeddings, metadatas=metadatas
        )

    def delete(self, collection_name: str, ids: list[str]):
        # Delete the items from the collection based on the ids.
        collection = self.client.get_collection(name=collection_name)
        if collection:
            collection.delete(ids=ids)

    def reset(self):
        # Resets the database. This will delete all collections and item entries.
        return self.client.reset()