File size: 4,927 Bytes
5120311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import pika
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

import json
import time
# from get_config import config_params
from config import get_config
from function import topic_clustering_mnews as tc
import requests

config_params = get_config()
ConfigManager = config_params['ConfigManager']

last_time_check = time.time()
def update_result(result, type='daily', meta = {}):
    command_id = meta["command_id"]

    output = {
        "id": command_id,
        "status": 2,
        "json_result": json.dumps(result)
    }
 
    url = "https://staging.pontusinc.com/api/news_management/v1/quick_search/update-command-result"
    # with open("/home/vietle/topic-clustering/config/save_.json", 'w') as f:
    #     json.dump(output, f,ensure_ascii=False)
    res = requests.post(url, json = output)
    print(res.text)
    print('Update result !!!!!!!!!')

def callback_func(ch, method, properties, body):
    print("receive done: ")
    starttime = time.time()
    body = json.loads(body.decode("utf-8"))
    
    # with open('input_daily.json','w') as f:
    #     json.dump(body, f, ensure_ascii=False)

    docs = body['docs']
    # threshold = body['threshold']
    command_id = body.get("command_id",0)
    print(command_id)
    threshold = 0.1
    top_cluster = body['top_cluster']
    top_sentence = body['top_sentence']
    topn_summary = body['topn_summary']
    hash_str = body['hash_str']
    st_time = body['st_time']
    meta = body.get('meta',{})
    meta["command_id"] = command_id

    is_cache = False
    try:
        with open("log_mnews/log/log.txt") as f:
            data_dict = json.load(f)
    except Exception as ve:
        print(ve)
        data_dict = {}

    try:
        if hash_str in data_dict:
            path_res = data_dict[hash_str]["response_path"]
            with open(path_res) as ff:
                results = json.load(ff)
            print("time analysis (cache): ", time.time() - st_time)
            update_result(results,meta=meta)
            is_cache = True
    except Exception as vee:
        print(vee)

    if not is_cache:
        results = tc.topic_clustering(docs, threshold, top_cluster=top_cluster, top_sentence=top_sentence,
                                    topn_summary=topn_summary)
        update_result(results, meta=meta)
        
        path_res = "log_mnews/result_{0}.txt".format(hash_str)
        with open(path_res, "w+") as ff:
            ff.write(json.dumps(results))

        data_dict[hash_str] = {"time": st_time, "response_path": path_res}

        lst_rm = []
        global last_time_check
        if time.time() - last_time_check > 3600:
            print("check log to del .....")
            last_time_check = time.time()
            for dt in data_dict:
                if time.time() - data_dict[dt]["time"] > 30 * 24 * 3600:
                    lst_rm.append(dt)
            for dt in lst_rm:
                del data_dict[dt]
            with open("log_mnews/log/log.txt", "w+") as ff:
                ff.write(json.dumps(data_dict))
        print("time analysis: ", time.time() - starttime)
    ch.basic_ack(delivery_tag=method.delivery_tag)


def test():
    with open('req_daily/aus.json') as f:
        body = json.load(f)

    docs = body['response']['docs']
    # threshold = body['threshold']
    threshold = 0.25
    top_cluster = body['top_cluster']
    top_sentence = body['top_sentence']
    topn_summary = body['topn_summary']
    # hash_str = body['hash_str']
    # st_time = body['st_time']
    meta = body['response'].get('meta',{})
    results = tc.topic_clustering(docs, threshold, top_cluster=top_cluster, top_sentence=top_sentence,
                                    topn_summary=topn_summary)
    update_result(results, meta=meta)
    print(123)
if __name__ == '__main__':
    params = ConfigManager['QueueConfigs']['queue_topic_clustering_mnews']
    usr_name = params["UserName"]
    password = str(params["Password"])
    host = params["HostName"]
    virtual_host = params["VirtualHost"]
    queue_name = params["Queue"]

    while True:
        try:
            credentials = pika.PlainCredentials(usr_name, password)
            connection = pika.BlockingConnection(
                pika.ConnectionParameters(host=host, virtual_host=virtual_host, credentials=credentials, heartbeat=3600, blocked_connection_timeout=3600))
            channel = connection.channel()
            channel.queue_declare(queue=queue_name, durable=True, arguments={"x-max-priority": 10})
            print(" * wait message")
            channel.basic_qos(prefetch_count=1)
            channel.basic_consume(queue=queue_name, on_message_callback=callback_func)
            channel.start_consuming()
        except Exception as ex:
            print(f'[ERROR] ', ex)
            # raise ex