File size: 24,963 Bytes
5120311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
from tensorRT import inference
import re
from collections import Counter
from vncorenlp import VnCoreNLP
from nltk.tokenize import sent_tokenize
import torch
import datetime
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import json
from . import utils
import time
from summary import text_summary, get_summary_bert
from function.clean_text import normalize_text
from .summary_with_llm import summary_with_llama
from .translate import translate_text_multi_layer
from scipy.spatial import distance
import copy
from .sentence_embbeding import embbeded_zh, embbeded_en, embedded_bge
# from . import detect_time as dt
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
use_cuda = torch.cuda.is_available()
print(torch.cuda.is_available())
# annotator = VnCoreNLP('vncorenlp/VnCoreNLP-1.1.1.jar', port=9191, annotators="wseg,pos", max_heap_size='-Xmx2g')
def detect_postaging(text_in):
word_segmented_text = annotator.annotate(text_in)
lst_k = []
for se in word_segmented_text["sentences"]:
for kw in se:
if kw["posTag"] in ("Np", "Ny", "N"):
if kw["posTag"] == "N" and "_" not in kw["form"]:
continue
lst_k.append(kw["form"].replace("_", " "))
return list(set(lst_k))
def clean_text(text_in):
doc = re.sub('<.*?>', '', text_in)
doc = re.sub('(function).*}', ' ', doc)
# link
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.vgp)', ' ', doc)
# escape sequence
doc = re.sub('\n', ' ', doc)
doc = re.sub('\t', ' ', doc)
doc = re.sub('\r', ' ', doc)
doc = normalize_text(doc)
return doc
def data_cleaning(docs):
res = []
for d in docs:
if 'message' in d:
# css and js
doc = re.sub('<.*?>', '', d['message'])
doc = re.sub('(function).*}', ' ', doc)
# link
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.vgp)', ' ', doc)
# escape sequence
doc = re.sub('\n', ' ', doc)
doc = re.sub('\t', ' ', doc)
doc = re.sub('\r', ' ', doc)
d['message'] = doc
res.append(d)
return res
def segment(docs, lang="vi"):
segmented_docs = []
for d in docs:
# print(d)
# if len(d.get('message', "")) > 8000 or len(d.get('message', "")) < 100:
if len(d.get('message', "")) > 8000:
continue
if 'snippet' not in d:
continue
try:
if lang == "vi":
snippet = d.get('snippet', "")
segmented_snippet = ""
segmented_sentences_snippet = annotator.tokenize(snippet)
for sentence in segmented_sentences_snippet:
segmented_snippet += ' ' + ' '.join(sentence)
segmented_snippet = segmented_snippet.replace('\xa0', '')
d['segmented_snippet'] = segmented_snippet
segmented_docs.append(d)
except Exception:
pass
return segmented_docs
def timestamp_to_date(timestamp):
return datetime.datetime.fromtimestamp(timestamp).strftime('%d/%m/%Y')
def re_ranking(result_topic, vectors_prompt, sorted_field):
lst_score = []
lst_ids = []
lst_top = []
try:
for k in result_topic:
lst_ids.append(k)
if not sorted_field.strip():
lst_top.append(len(result_topic[k]))
else:
lst_top.append(result_topic[k][0]['max_score'])
vector_center = result_topic[k][0]["vector"]
max_score = 11.0
for vec in vectors_prompt:
score = distance.cosine(np.array(vec), np.array(vector_center))
if score < max_score:
max_score = score
lst_score.append(max_score)
result_topic[k][0]["similarity_score"] = max_score
for d in result_topic[k]:
d["similarity_score"] = max_score
del result_topic[k][0]["vector"]
idx = np.argsort(np.array(lst_score))
except Exception as ve:
return [], lst_ids, lst_top
return idx, lst_ids, lst_top
def post_processing(response, top_cluster=5, top_sentence=5, topn_summary=5, sorted_field='', max_doc_per_cluster = 50, delete_message=True, prompt="", hash_str: str= "", vectors_prompt: list = []):
print(f'[INFO] sorted_field: {sorted_field}')
MAX_DOC_PER_CLUSTER = max_doc_per_cluster
lst_ids = []
lst_top = []
lst_res = []
idx = []
if prompt:
idx, lst_ids, lst_top = re_ranking(response, vectors_prompt, sorted_field)
print("idx_prompt: ", idx)
if len(prompt) == 0 or len(idx) == 0:
for i in response:
lst_ids.append(i)
if not sorted_field.strip():
lst_top.append(len(response[i]))
else:
lst_top.append(response[i][0]['max_score'])
idx = np.argsort(np.array(lst_top))[::-1]
print("idx_not_prompt: ", idx)
if top_cluster == -1:
top_cluster = len(idx)
for i in idx[: top_cluster]:
ik = lst_ids[i]
if top_sentence == -1:
top_sentence = len(response[ik])
lst_check_title = []
lst_check_not_title = []
i_c_t = 0
for resss in response[ik]:
r_title = resss.get("title", "")
if r_title and not r_title.endswith("..."):
lst_check_title.append(resss)
i_c_t += 1
else:
lst_check_not_title.append(resss)
if i_c_t == top_sentence:
break
if i_c_t == top_sentence:
lst_res.append(lst_check_title)
else:
lst_check_title.extend(lst_check_not_title)
lst_res.append(lst_check_title[:top_sentence])
#lst_res.append(response[ik][:top_sentence])
dict_res = {}
for i in range(len(lst_res)):
dict_res[str(i + 1)] = lst_res[i][:MAX_DOC_PER_CLUSTER]
for j in range(min(len(dict_res[str(i + 1)]), 3)):
dict_res[str(i + 1)][0]["title_summarize"].append(dict_res[str(i + 1)][j].get("snippet", ""))
# t11 = time.time()
summary_text = get_summary_bert(dict_res[str(i + 1)][0].get("message", ""), dict_res[str(i + 1)][0].get("lang", "vi"), topn=topn_summary, title=dict_res[str(i + 1)][0].get("title", ""), snippet=dict_res[str(i + 1)][0].get("snippet", ""))
# print("time_summary: ", time.time() - t11)
if len(summary_text) < 10:
summary_text = dict_res[str(i + 1)][0].get("snippet", "")
if len(summary_text) < 10:
summary_text = dict_res[str(i + 1)][0].get("title", "")
summary_text = utils.remove_image_keyword(summary_text)
# if prompt:
# if dict_res[str(i + 1)][0].get("message", ""):
# src_lang = dict_res[str(i + 1)][0].get("lang", "")
# print("src_lang: ", src_lang)
# print("summary_text: ", summary_text)
# summary_text = translate_text_multi_layer(src_lang, "vi", summary_text)
# text_tran = translate_text_multi_layer(src_lang, "vi", dict_res[str(i + 1)][0].get("message", ""))
# ans_from_llama = summary_with_llama(prompt, text_tran, "vi", version="vi-llama", max_word_per_context=1000)
# print("ans_from_llama: ", ans_from_llama)
# summary_text = summary_text + "$$$$\n" + ans_from_llama
# print("summary_text: ", summary_text, len(summary_text))
dict_res[str(i + 1)][0]["content_summary"] = summary_text
dict_res[str(i + 1)][0]["num_of_post"] = len(lst_res[i])
kew_phares = []
dict_res[str(i + 1)][0]["topic_keywords"] = kew_phares
# print("delete_message: ", delete_message)
if delete_message:
for j in range(len(dict_res[str(i + 1)])):
if "message" in dict_res[str(i + 1)][j]:
del dict_res[str(i + 1)][j]["message"]
with open(f"log_llm/topic_result_after_postprocessing/{hash_str}.json", "w") as f:
dict_log_pos = {}
for k in dict_res:
dict_log_pos[k] = copy.deepcopy(dict_res[k])
for d in dict_log_pos[k]:
if "message" in d:
del d["message"]
if "vector" in d:
del d["vector"]
json.dump(dict_log_pos, f, ensure_ascii= False)
return dict_res
def get_lang(docs):
lang_vi = 0
lang_en = 0
dict_lang = {}
for d in docs:
lang = d.get("lang", "")
if lang not in dict_lang:
dict_lang[lang] = 0
dict_lang[lang] += 1
# if d.get("lang", "") == "vi":
# lang_vi += 1
# else:
# lang_en += 1
lst_lang = []
lst_cnt = []
for k in dict_lang:
lst_lang.append(k)
lst_cnt.append(dict_lang[k])
idx_max = np.argsort(np.array(lst_cnt))[::-1][0]
lang = lst_lang[int(idx_max)]
if lang.startswith("zh_"):
lang = "zh"
print("lang: ", lang, lst_cnt[int(idx_max)])
return lang
def topic_clustering(docs, distance_threshold, top_cluster=5, top_sentence=5, topn_summary=5, sorted_field='', max_doc_per_cluster=50,
delete_message=True, prompt="", type_cluster:str = "single", hash_str: str= "", id_topic=""):
# global model, model_en
with open("data/topic_name.txt") as f:
dict_topic_name = json.load(f)
topic_name_relevant = dict_topic_name.get(id_topic , "")
docs = docs[:30000]
lang = get_lang(docs)
if type_cluster == "complete" and lang == "zh":
distance_threshold = 0.4
if type_cluster == "complete" and lang == "en":
distance_threshold = 0.4
# type_cluster = "single"
result = {}
cluster_score = {}
cluster_real_vectors = {}
# docs = segment(docs, lang=lang)
t1 = time.time()
if len(docs) < 1:
return result
elif len(docs) == 1:
return {
"0": docs
}
vec_prompt = []
prompt_strips = []
# prompt = ""
if topic_name_relevant:
prompt_split = topic_name_relevant.split("#####")
for prom in prompt_split:
sys_p = prom.strip().split("$$$$")
if len(sys_p) == 1:
prompt_strips.append(prom.strip())
else:
prompt_strips.append(sys_p[1].strip())
if lang == "zh":
vec_prompt = embbeded_zh(prompt_split)
elif lang == "en":
vec_prompt = embbeded_en(prompt_split)
else:
vec_prompt = inference.encode(prompt_split, lang=lang)
if lang == "zh":
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
vectors = embbeded_zh(features)
# vectors = embedded_bge(features)
if len(vectors) == 0:
print(f"[WARNING] Embedded {lang}: {len(vectors)} / {len(features)}")
vectors = inference.encode(features, lang=lang)
# vectors = model.encode(features, show_progress_bar=False)
elif lang == "en":
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
vectors = embbeded_en(features)
# vectors = embedded_bge(features)
if len(vectors) == 0:
print(f"[WARNING] Embedded {lang}: {len(vectors)} / {len(features)}")
vectors = inference.encode(features, lang=lang)
else:
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
# vectors = embedded_bge(features)
# if len(vectors) == 0:
# print(f"[WARNING] Embedded {lang}: {len(vectors)} / {len(features)}")
vectors = inference.encode(features, lang=lang)
# vectors = model_en.encode(features, show_progress_bar=False)
clusteror = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, affinity='cosine',
linkage=type_cluster, distance_threshold=distance_threshold)
clusteror.fit(vectors)
matrix_vec = np.stack(vectors, axis=0)
print(f"Time encode + clustering: {time.time() - t1} {clusteror.n_clusters_}")
for i in range(clusteror.n_clusters_):
result[str(i + 1)] = []
cluster_score[str(i + 1)] = 0
ids = clusteror.labels_ # == i
# cluster_real_vectors[str(i + 1)] = re_clustering(ids, matrix_vec, distance_threshold, max_doc_per_cluster)
for i in range(len(clusteror.labels_)):
cluster_no = clusteror.labels_[i]
# if any((cluster_real_vectors[str(cluster_no+1)][:] == vectors[i]).all(1)):
if docs[i].get('domain','') not in ["cungcau.vn","baomoi.com","news.skydoor.net"]:
response_doc = {}
response_doc = docs[i]
score = response_doc.get('score', 0)
if not docs[i].get('message','').strip():
continue
if score > cluster_score[str(cluster_no + 1)]:
cluster_score[str(cluster_no + 1)] = score
if 'domain' in docs[i]:
response_doc['domain'] = docs[i]['domain']
if 'url' in docs[i]:
response_doc['url'] = docs[i]['url']
if 'title' in docs[i]:
response_doc['title'] = clean_text(docs[i]['title'])
if 'snippet' in docs[i]:
response_doc['snippet'] = clean_text(docs[i]['snippet'])
if 'created_time' in docs[i]:
response_doc['created_time'] = docs[i]['created_time']
if "sentiment" in docs[i]:
response_doc['sentiment'] = docs[i]['sentiment']
if 'message' in docs[i]:
title = docs[i].get('title','')
snippet = docs[i].get('snippet','')
message = docs[i].get('message','')
if title.strip():
split_mess = message.split(title)
if len(split_mess) > 1:
message = title.join(split_mess[1:])
if snippet.strip():
split_mess = message.split(snippet)
if len(split_mess) > 1:
message = snippet.join(split_mess[1:])
response_doc['message'] = clean_text(message)
if 'id' in docs[i]:
response_doc['id'] = docs[i]['id']
# response_doc['score'] = 0.0
response_doc['title_summarize'] = []
response_doc['content_summary'] = ""
response_doc['total_facebook_viral'] = 0
response_doc["vector"] = np.array(vectors[i]).tolist()
result[str(cluster_no + 1)].append(response_doc)
empty_clus_ids = []
for x in result:
result[x] = sorted(result[x], key=lambda i: -len(i.get('message','')))
if len( result[x]) > 0:
if len(result[x]) > 1:
result[x] = check_duplicate_title_domain(result[x])
result[x][0]['num_docs'] = len(result[x])
result[x][0]['max_score'] = cluster_score[x]
else:
empty_clus_ids.append(x)
for x in empty_clus_ids:
result.pop(x,None)
# result = dict(sorted(result.items(), key=lambda i: -len(i[1])))[:top_cluster]
with open(f"log_llm/topic_result_before_postprocessing/{hash_str}.json", "w") as f:
dict_log = {}
for k in result:
dict_log[k] = copy.deepcopy(result[k])
for d in dict_log[k]:
if "message" in d:
del d["message"]
if "vector" in d:
del d["vector"]
json.dump(dict_log, f, ensure_ascii= False)
return post_processing(result, top_cluster=top_cluster, top_sentence=top_sentence, topn_summary=topn_summary, sorted_field = sorted_field, max_doc_per_cluster=max_doc_per_cluster, delete_message=delete_message,
prompt=topic_name_relevant, hash_str=hash_str, vectors_prompt=vec_prompt)
def check_duplicate_title_domain(docs):
lst_title_domain = [f"{d.get('domain', '')} {d.get('title','')}" for d in docs]
for i in range(1,len(lst_title_domain) -1):
for j in range(i+1,len(lst_title_domain)):
if lst_title_domain[j] == lst_title_domain[i]:
lst_title_domain[j] = 'dup'
lst_filter_docs = [docs[i] for i,x in enumerate(lst_title_domain) if x != 'dup']
return lst_filter_docs
def convert_date(text):
text = text.replace(".", "/")
text = text.replace("-", "/")
return text
def check_keyword(sentence):
keyword = ['sáng', 'trưa', 'chiều', 'tối', 'đến', 'hôm', 'ngày', 'tới']
for k in keyword:
if k in sentence:
return True
return False
def extract_events_and_time(docs, publish_date):
def standardize(date_str):
return date_str.replace('.', '/').replace('-', '/')
def add_0(date_str):
date_str = date_str.split('/')
res = []
for o in date_str:
o = re.sub('\s+', '', o)
if len(o) < 2:
o = '0' + o
res.append(o)
date_str = '/'.join(res)
return date_str
def get_date_list(reg, sentence):
find_object = re.finditer(reg, sentence)
date_list = [x.group() for x in find_object]
return date_list
year = publish_date.split('/')[2]
# dd/mm/yyyy
reg_exp_1 = '(\D|^)(?:0?[1-9]|[12][0-9]|3[01])[- \/.](?:0?[1-9]|1[012])[- \/.]([12]([0-9]){3})(\D|$)'
# #mm/yyyy
# reg_exp_5 = '(\D|^)(?:0?[1-9]|1[012])[- \/.]([12]([0-9]){3})(\D|$)'
# dd/mm
reg_exp_2 = '(\D|^)(?:0?[1-9]|[12][0-9]|3[01])[- \/.](?:0?[1-9]|1[012])(\D|$)'
# ngày dd tháng mm năm yyyy
reg_exp_3 = '(ngày)\s*\d{1,2}\s*(tháng)\s*\d{1,2}\s*(năm)\s*\d{4}'
# ngày dd tháng mm
reg_exp_4 = '(ngày)\s*\d{1,2}\s*(tháng)\s*\d{1,2}'
result = []
for d in docs:
text = d['message']
for sentence in sent_tokenize(text):
lower_sentence = sentence.lower()
c = re.search(reg_exp_3, sentence.lower())
d = re.search(reg_exp_4, sentence.lower())
# e = re.search(reg_exp_5, sentence.lower())
a = re.search(reg_exp_1, sentence)
b = re.search(reg_exp_2, sentence)
#
if (a or b or c or d) and check_keyword(lower_sentence):
date_list = get_date_list(reg_exp_1, lower_sentence)
date_entity = ''
if date_list:
date_entity = add_0(standardize(date_list[0]))
elif get_date_list(reg_exp_2, lower_sentence):
date_list = get_date_list(reg_exp_2, lower_sentence)
date_entity = add_0(standardize(date_list[0]) + '/' + year)
elif get_date_list(reg_exp_3, lower_sentence):
date_list = get_date_list(reg_exp_3, lower_sentence)
date_entity = date_list[0].replace('ngày', '').replace('tháng', '').replace('năm', '').strip()
date_entity = re.sub('\s+', ' ', date_entity)
date_entity = date_entity.replace(' ', '/')
date_entity = add_0(date_entity)
else:
date_list = get_date_list(reg_exp_4, lower_sentence)
if date_list != []:
date_entity = date_list[0].replace('ngày', '').replace('tháng', '').replace('năm', '').strip()
date_entity = re.sub('\s+', ' ', date_entity)
date_entity = date_entity.replace(' ', '/')
date_entity = date_entity + '/' + year
date_entity = add_0(date_entity)
result.append((sentence, date_entity))
return result
def find_index_nearest_vector(cluster, vectors):
# Compute the centroid of the cluster
centroid = np.mean(cluster, axis=0, keepdims=True)
# Calculate the Euclidean distance between each vector and the centroid
distances = cosine_similarity(centroid, vectors)
# Find the index of the vector with the minimum distance
nearest_index = np.argmin(distances, axis=1)
return nearest_index
def re_clustering(ids, vectors, distance_threshold, max_doc_per_cluster):
sub_vectors = vectors[ids]
try:
if sub_vectors.shape[0] < 2:
return sub_vectors
sub_clusteror = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, affinity='cosine',
linkage='complete', distance_threshold=0.12)
sub_clusteror.fit(sub_vectors)
dict_cluster = {id_clus: sub_vectors[sub_clusteror.labels_ == id_clus] for id_clus in range(sub_clusteror.n_clusters_)}
dict_num_vec = {id_clus: v.shape[0] for id_clus, v in dict_cluster.items()}
max_num_cluster = max(dict_num_vec, key=dict_num_vec.get)
other_vectors = sub_vectors[sub_clusteror.labels_ != max_num_cluster]
# if other_vectors.shape[0]:
# while dict_num_vec[max_num_cluster] < max_doc_per_cluster:
# tmp_index_vec = find_index_nearest_vector(dict_cluster[max_num_cluster], other_vectors)
# dict_cluster[max_num_cluster] = np.vstack((dict_cluster[max_num_cluster], other_vectors[tmp_index_vec]))
# dict_num_vec[max_num_cluster] += 1
# if other_vectors.shape[0] != 1:
# other_vectors = np.delete(other_vectors, tmp_index_vec, axis=0)
# else:
# break
cosine_scores = cosine_similarity(dict_cluster[max_num_cluster], dict_cluster[max_num_cluster])
with open("/home/vietle/topic-clustering/log_score.txt", "a") as f:
f.write(str(cosine_scores) + "\n")
return dict_cluster[max_num_cluster]
except Exception as e:
with open("/home/vietle/topic-clustering/log_clustering_diemtin/log_cluster_second.txt", "a") as f:
f.write(str(e)+"$$"+json.dumps({"ids": ids.tolist(), "vectors": vectors.tolist()}))
return sub_vectors |