File size: 13,761 Bytes
5120311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import re
from vncorenlp import VnCoreNLP
from nltk.tokenize import sent_tokenize
import torch
from sentence_transformers import SentenceTransformer
import datetime
from sklearn.cluster import AgglomerativeClustering
import numpy as np
import requests
import json
from . import utils
import time
from summary import text_summary, get_summary_bert
# from . import detect_time as dt
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base').to(device)
model_en = SentenceTransformer('paraphrase-mpnet-base-v2').to(device)
annotator = VnCoreNLP('vncorenlp/VnCoreNLP-1.1.1.jar', port=9191, annotators="wseg,pos", max_heap_size='-Xmx8g')
def detect_postaging(text_in):
word_segmented_text = annotator.annotate(text_in)
lst_k = []
for se in word_segmented_text["sentences"]:
for kw in se:
if kw["posTag"] in ("Np", "Ny", "N"):
if kw["posTag"] == "N" and "_" not in kw["form"]:
continue
lst_k.append(kw["form"].replace("_", " "))
return list(set(lst_k))
def clean_text(text_in):
doc = re.sub('<.*?>', '', text_in)
doc = re.sub('(function).*}', ' ', doc)
# link
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.vgp)', ' ', doc)
# escape sequence
doc = re.sub('\n', ' ', doc)
doc = re.sub('\t', ' ', doc)
doc = re.sub('\r', ' ', doc)
return doc
def data_cleaning(docs):
res = []
for d in docs:
if 'message' in d:
# css and js
doc = re.sub('<.*?>', '', d['message'])
doc = re.sub('(function).*}', ' ', doc)
# link
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.vgp)', ' ', doc)
# escape sequence
doc = re.sub('\n', ' ', doc)
doc = re.sub('\t', ' ', doc)
doc = re.sub('\r', ' ', doc)
d['message'] = doc
res.append(d)
return res
def segment(docs, lang="vi"):
segmented_docs = []
for d in docs:
# if len(d.get('message', "")) > 8000 or len(d.get('message', "")) < 100:
# continue
if 'snippet' not in d and 'title' not in d:
continue
try:
if lang == "vi":
snippet = d.get('snippet', "")
segmented_snippet = ""
segmented_sentences_snippet = annotator.tokenize(snippet)
for sentence in segmented_sentences_snippet:
segmented_snippet += ' ' + ' '.join(sentence)
segmented_snippet = segmented_snippet.replace('\xa0', '')
d['segmented_snippet'] = segmented_snippet
segmented_docs.append(d)
except Exception:
pass
return segmented_docs
def timestamp_to_date(timestamp):
return datetime.datetime.fromtimestamp(timestamp).strftime('%d/%m/%Y')
def sort_content(lst_res):
lst_content = []
lst_cnt = []
for i in range(len(lst_res)):
lst_cnt.append(len(lst_res[i].get("message", "")))
id_sort = np.argsort(np.array(lst_cnt))[::-1]
for i in id_sort:
lst_content.append(lst_res[i])
return lst_content
def post_processing(response, top_cluster=5, top_sentence=5, topn_summary=5):
lst_ids = []
lst_top = []
lst_res = []
for i in response:
lst_ids.append(i)
lst_top.append(len(response[i]))
idx = np.argsort(np.array(lst_top))[::-1]
if top_cluster == -1:
top_cluster = len(idx)
for i in idx[: top_cluster]:
ik = lst_ids[i]
if top_sentence == -1:
top_sentence = len(response[ik])
lst_check_title = []
lst_check_not_title = []
i_c_t = 0
response_sort = sort_content(response[ik].copy())
for resss in response_sort:
if resss.get("title", ""):
lst_check_title.append(resss)
i_c_t += 1
else:
lst_check_not_title.append(resss)
if i_c_t == top_sentence:
break
if i_c_t == top_sentence:
lst_res.append(lst_check_title)
else:
lst_check_title.extend(lst_check_not_title)
lst_res.append(lst_check_title[:top_sentence])
dict_res = {}
for i in range(len(lst_res)):
dict_res[str(i + 1)] = lst_res[i]
for j in range(min(len(dict_res[str(i + 1)]), 3)):
dict_res[str(i + 1)][0]["title_summarize"].append(dict_res[str(i + 1)][j].get("snippet", ""))
summary_text = get_summary_bert(dict_res[str(i + 1)][0].get("message", ""), lang = dict_res[str(i + 1)][0].get("lang", "vi"), topn=topn_summary)
if len(summary_text) < 10:
summary_text = dict_res[str(i + 1)][0].get("snippet", "")
if len(summary_text) < 10:
summary_text = dict_res[str(i + 1)][0].get("title", "")
dict_res[str(i + 1)][0]["content_summary"] = utils.remove_image_keyword(summary_text)
kew_phares = []
dict_res[str(i + 1)][0]["topic_keywords"] = kew_phares
for j in range(len(dict_res[str(i + 1)])):
if "message" in dict_res[str(i + 1)][j]:
del dict_res[str(i + 1)][j]["message"]
return dict_res
def get_lang(docs):
lang_vi = 0
lang_en = 0
docs_lang_vi = []
docs_lang_en = []
for d in docs:
if d.get("lang", "") == "en":
lang_en += 1
docs_lang_en.append(d)
else:
lang_vi += 1
docs_lang_vi.append(d)
if lang_vi > lang_en:
return "vi", docs_lang_vi
return "en", docs_lang_en
def topic_clustering(docs, distance_threshold, top_cluster=5, top_sentence=5, topn_summary=5, benchmark_id=1):
global model, model_en
lang, docs = get_lang(docs)
result = {}
docs = segment(docs, lang=lang)
print("docs segment: ", len(docs))
if len(docs) < 2:
return result
if lang == "vi":
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
vectors = model.encode(features, show_progress_bar=False)
else:
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
vectors = model_en.encode(features, show_progress_bar=False)
clusteror = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, affinity='cosine',
linkage='single', distance_threshold=distance_threshold)
clusteror.fit(vectors)
print(clusteror.n_clusters_)
for i in range(clusteror.n_clusters_):
result[str(i + 1)] = []
for i in range(len(clusteror.labels_)):
cluster_no = clusteror.labels_[i]
response_doc = {}
if 'url' in docs[i]:
response_doc['url'] = docs[i]['url']
if 'domain' in docs[i]:
response_doc['domain'] = docs[i]['domain']
if 'title' in docs[i]:
response_doc['title'] = clean_text(docs[i]['title'])
if 'snippet' in docs[i]:
response_doc['snippet'] = clean_text(docs[i]['snippet'])
if 'created_time' in docs[i]:
response_doc['created_time'] = docs[i]['created_time']
if 'message' in docs[i]:
response_doc['message'] = clean_text(docs[i]['message'])
if 'id' in docs[i]:
response_doc['id'] = docs[i]['id']
response_doc['score'] = 0.0
response_doc['title_summarize'] = []
response_doc['content_summary'] = ""
response_doc['total_facebook_viral'] = 0
result[str(cluster_no + 1)].append(response_doc)
# print("before filter: ", len(result))
# result = smart_filter(result, benchmark_id=benchmark_id)
# print("after filter: ", len(result))
return post_processing(result, top_cluster=top_cluster, top_sentence=top_sentence, topn_summary=topn_summary)
def convert_date(text):
text = text.replace(".", "/")
text = text.replace("-", "/")
return text
def check_keyword(sentence):
keyword = ['sáng', 'trưa', 'chiều', 'tối', 'đến', 'hôm', 'ngày', 'tới']
for k in keyword:
if k in sentence:
return True
return False
def extract_events_and_time(docs, publish_date):
def standardize(date_str):
return date_str.replace('.', '/').replace('-', '/')
def add_0(date_str):
date_str = date_str.split('/')
res = []
for o in date_str:
o = re.sub('\s+', '', o)
if len(o) < 2:
o = '0' + o
res.append(o)
date_str = '/'.join(res)
return date_str
def get_date_list(reg, sentence):
find_object = re.finditer(reg, sentence)
date_list = [x.group() for x in find_object]
return date_list
year = publish_date.split('/')[2]
# dd/mm/yyyy
reg_exp_1 = '(\D|^)(?:0?[1-9]|[12][0-9]|3[01])[- \/.](?:0?[1-9]|1[012])[- \/.]([12]([0-9]){3})(\D|$)'
# #mm/yyyy
# reg_exp_5 = '(\D|^)(?:0?[1-9]|1[012])[- \/.]([12]([0-9]){3})(\D|$)'
# dd/mm
reg_exp_2 = '(\D|^)(?:0?[1-9]|[12][0-9]|3[01])[- \/.](?:0?[1-9]|1[012])(\D|$)'
# ngày dd tháng mm năm yyyy
reg_exp_3 = '(ngày)\s*\d{1,2}\s*(tháng)\s*\d{1,2}\s*(năm)\s*\d{4}'
# ngày dd tháng mm
reg_exp_4 = '(ngày)\s*\d{1,2}\s*(tháng)\s*\d{1,2}'
result = []
for d in docs:
text = d['message']
for sentence in sent_tokenize(text):
lower_sentence = sentence.lower()
c = re.search(reg_exp_3, sentence.lower())
d = re.search(reg_exp_4, sentence.lower())
# e = re.search(reg_exp_5, sentence.lower())
a = re.search(reg_exp_1, sentence)
b = re.search(reg_exp_2, sentence)
#
if (a or b or c or d) and check_keyword(lower_sentence):
date_list = get_date_list(reg_exp_1, lower_sentence)
date_entity = ''
if date_list:
date_entity = add_0(standardize(date_list[0]))
elif get_date_list(reg_exp_2, lower_sentence):
date_list = get_date_list(reg_exp_2, lower_sentence)
date_entity = add_0(standardize(date_list[0]) + '/' + year)
elif get_date_list(reg_exp_3, lower_sentence):
date_list = get_date_list(reg_exp_3, lower_sentence)
date_entity = date_list[0].replace('ngày', '').replace('tháng', '').replace('năm', '').strip()
date_entity = re.sub('\s+', ' ', date_entity)
date_entity = date_entity.replace(' ', '/')
date_entity = add_0(date_entity)
else:
date_list = get_date_list(reg_exp_4, lower_sentence)
if date_list != []:
date_entity = date_list[0].replace('ngày', '').replace('tháng', '').replace('năm', '').strip()
date_entity = re.sub('\s+', ' ', date_entity)
date_entity = date_entity.replace(' ', '/')
date_entity = date_entity + '/' + year
date_entity = add_0(date_entity)
result.append((sentence, date_entity))
return result
|