import gradio as gr import datasets import transformers import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = datasets.load_dataset('beans') extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') with torch.no_grad(): logits = model(**features).logits probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences gr.Interface(fn = classify, inputs = "image", outputs = "label", examples='/examples', title='Leaf classification on beans dataset', description='Fine-tuning a ViT for bean plant health classification' ).launch(debug=True)