Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# Load trained XGBoost model
|
6 |
+
with open("xgboost_trip_delay_model.pkl", "rb") as f:
|
7 |
+
model = pickle.load(f)
|
8 |
+
|
9 |
+
# Define the prediction function for Gradio
|
10 |
+
def predict_bus_delay(route_id, trip_direction, speed, trip_delay_y, hour, minute, last_stop_arrival_seconds):
|
11 |
+
data = pd.DataFrame({
|
12 |
+
"route_id": [route_id],
|
13 |
+
"trip_direction": [1 if trip_direction == "UP" else 0],
|
14 |
+
"speed": [float(speed)],
|
15 |
+
"trip_delay_y": [float(trip_delay_y)],
|
16 |
+
"hour": [int(hour)],
|
17 |
+
"minute": [int(minute)],
|
18 |
+
"last_stop_arrival_seconds": [int(last_stop_arrival_seconds)]
|
19 |
+
})
|
20 |
+
|
21 |
+
data["route_id"] = data["route_id"].astype("category")
|
22 |
+
|
23 |
+
# Make prediction
|
24 |
+
prediction = model.predict(data)[0]
|
25 |
+
return f"Predicted Bus Delay Between Stops: {prediction:.2f} seconds"
|
26 |
+
|
27 |
+
# Create Gradio interface
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=predict_bus_delay,
|
30 |
+
inputs=[
|
31 |
+
gr.Textbox(label="Route ID"),
|
32 |
+
gr.Dropdown(label="Direction", choices=["UP", "DN"]),
|
33 |
+
gr.Number(label="Speed"),
|
34 |
+
gr.Number(label="Previous Stop Delay"),
|
35 |
+
gr.Number(label="Hour"),
|
36 |
+
gr.Number(label="Minute"),
|
37 |
+
gr.Number(label="Last Stop Arrival (s)")
|
38 |
+
],
|
39 |
+
outputs="text"
|
40 |
+
)
|
41 |
+
|
42 |
+
# Launch the Gradio interface
|
43 |
+
interface.launch()
|