import gradio as gr import pickle import pandas as pd # Load trained XGBoost model with open("xgboost_trip_delay_model.pkl", "rb") as f: model = pickle.load(f) # List of available routes routes = [ "254U", "13U", "16D", "116BRU", "716U", "403D", "17AEU", "18U", "14U", "116BRD", "706D", "14D", "213D", "207ED", "716D", "706U", "15CU", "403U", "118D", "16U", "137JU", "402U", "20D", "11U", "103SD", "658U", "12U", "02U", "205GU", "103VD", "137JD", "305U", "117U", "108RD", "105D", "136U", "112D", "305D", "108RU", "12D", "22D", "20U", "19U", "204D", "136D", "658D", "112U", "504D", "17AD", "21D", "504U", "107JU", "106RU", "216KD", "11D", "117D", "104U", "22U", "104D", "506U", "106RD", "21U", "105U", "17AU", "216BD", "116RD", "207EU", "116RU", "402D", "18D", "118U", "903U", "01U", "206D", "206U", "903D" ] # Define the prediction function for Gradio def predict_bus_delay(route_id, trip_direction, speed, trip_delay_y, hour, minute, last_stop_arrival_seconds): data = pd.DataFrame({ "route_id": [route_id], "trip_direction": [1 if trip_direction == "UP" else 0], "speed": [float(speed)], "trip_delay_y": [float(trip_delay_y)], "hour": [int(hour)], "minute": [int(minute)], "last_stop_arrival_seconds": [int(last_stop_arrival_seconds)] }) data["route_id"] = data["route_id"].astype("category") # Make prediction prediction = model.predict(data)[0] return f"Predicted Bus Delay Between Stops: {prediction:.2f} seconds" # Create Gradio interface interface = gr.Interface( fn=predict_bus_delay, inputs=[ gr.Dropdown(label="Route ID", choices=routes), gr.Dropdown(label="Direction", choices=["UP", "DN"]), gr.Number(label="Speed"), gr.Number(label="Previous Stop Delay"), gr.Number(label="Hour"), gr.Number(label="Minute"), gr.Number(label="Last Stop Arrival (s)") ], outputs="text" ) # Launch the Gradio interface interface.launch()