Spaces:
Sleeping
Sleeping
File size: 1,045 Bytes
b397a75 4dfc7d3 b397a75 4dfc7d3 b397a75 498e1ca 4dfc7d3 822fabb 4dfc7d3 822fabb b397a75 498e1ca 4dfc7d3 498e1ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load your text generation model from Hugging Face using its identifier
model_identifier = "your-model-name-on-hugging-face"
model = AutoModelForCausalLM.from_pretrained(model_identifier)
tokenizer = AutoTokenizer.from_pretrained(model_identifier)
def generate_response(input_prompt):
# Tokenize input prompt
input_ids = tokenizer.encode(input_prompt, return_tensors="pt", max_length=512, truncation=True)
# Generate response
output_ids = model.generate(input_ids, max_length=100, num_return_sequences=1)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return response
# Create Gradio interface
input_prompt = gr.inputs.Textbox(lines=5, label="Input Prompt")
output_text = gr.outputs.Textbox(label="Response")
gr.Interface(
generate_response,
inputs=input_prompt,
outputs=output_text,
title="OmniCode",
description="Multi programming coding assistant",
theme="compact"
).launch()
|