Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,47 @@
|
|
1 |
-
from
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
model_name = "codellama/CodeLlama-7b-hf" # Assuming your CodeLlama model name
|
5 |
-
tokenizer = CodeLlamaTokenizer.from_pretrained(model_name)
|
6 |
-
model = CodeLlamaForConditionalGeneration.from_pretrained(model_name)
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
max_length=max_length,
|
18 |
-
temperature=temperature,
|
19 |
-
pad_token_id=tokenizer.eos_token_id,
|
20 |
-
num_return_sequences=1)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
-
|
28 |
-
user_input = input("You: ")
|
29 |
-
response = generate_response(user_input)
|
30 |
-
print("OmniCode:", response)
|
|
|
1 |
+
from flask import Flask, request
|
2 |
+
import transformers
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
6 |
|
7 |
+
# Load Code-Llama model and tokenizer (outside function for efficiency)
|
8 |
+
model_name = "codellama/CodeLlama-7b-hf"
|
9 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = pipeline("text-generation", model=model_name, temperature=1.0) # Set temperature to 1
|
11 |
|
12 |
+
def answer_code_questions(question):
|
13 |
+
"""
|
14 |
+
Answers code-related questions using Code-Llama as OmniCode.
|
15 |
|
16 |
+
Args:
|
17 |
+
question (str): The code-related question to be answered.
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
Returns:
|
20 |
+
str: The answer generated by Code-Llama.
|
21 |
+
"""
|
22 |
+
|
23 |
+
# Create system message for OmniCode
|
24 |
+
system_message = f"<<SYS>>\nYou are a code teaching assistant named OmniCode created by Anusha K.\n<</SYS>>\n"
|
25 |
+
|
26 |
+
# Combine system message and user question
|
27 |
+
prompt = f"{system_message}\n{question}"
|
28 |
+
|
29 |
+
# Generate response using Code-Llama
|
30 |
+
try:
|
31 |
+
response = model(prompt, max_length=512, truncation=True)[0]["generated_text"]
|
32 |
+
return response.strip()
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error during generation: {e}")
|
35 |
+
return "I encountered an error while processing your question. Please try rephrasing it or providing more context."
|
36 |
+
|
37 |
+
@app.route("/", methods=["POST"])
|
38 |
+
def answer_question():
|
39 |
+
"""
|
40 |
+
Handles user-submitted questions and returns answers via POST request.
|
41 |
+
"""
|
42 |
+
question = request.form["question"]
|
43 |
+
answer = answer_code_questions(question)
|
44 |
+
return answer
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
+
app.run(debug=True) # Set debug=False for production use
|
|
|
|
|
|