curiouscurrent commited on
Commit
1814284
·
verified ·
1 Parent(s): fe86db6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -47
app.py CHANGED
@@ -1,53 +1,43 @@
1
  import gradio as gr
2
- import subprocess
3
- import os
4
  from PIL import Image
5
 
6
- # YOLOv8 detection function
7
- def detect_objects(image):
8
- # Save the uploaded image temporarily
9
- input_image_path = "input.jpg"
10
- image.save(input_image_path)
11
-
12
- # Define the YOLOv8 command
13
- output_dir = "./runs/detect"
14
- os.makedirs(output_dir, exist_ok=True)
15
-
16
- command = [
17
- "yolo", # YOLOv8 CLI command
18
- "task=detect", # Specify the task as detection
19
- "mode=predict", # Set mode to predict
20
- f"model=best.pt", # Path to your YOLOv8 model weights
21
- f"source={input_image_path}", # Input image path (uploaded by user)
22
- f"project={output_dir}", # Output directory
23
- f"name=result", # Subfolder name for results
24
- "exist_ok=True" # Allow overwriting existing results
25
- ]
26
-
27
- # Run YOLOv8 inference
28
- try:
29
- subprocess.run(command, check=True)
30
- except Exception as e:
31
- return f"Error during YOLO inference: {e}"
32
-
33
- # Get the path to the output image
34
- output_image_path = os.path.join(output_dir, "result", os.path.basename(input_image_path))
35
-
36
- # Check if the image exists
37
- if os.path.exists(output_image_path):
38
- # Return the image directly to Gradio
39
- return output_image_path # Return file path for Gradio to display
40
- else:
41
- return "Error: Output image not found."
42
-
43
- # Create the Gradio interface
44
  interface = gr.Interface(
45
- fn=detect_objects, # The function to call when an image is uploaded
46
- inputs=gr.Image(type="pil"), # Accept images as input
47
- outputs=gr.Image(type="filepath"), # Return image file path for display
48
- title="YOLOv8 Object Detection",
49
- description="Upload an image of floating waste in water, and this app will detect it using YOLOv8."
 
 
50
  )
51
 
52
- # Launch the Gradio app
53
- interface.launch(share=True) # Use share=True to get a public URL
 
1
  import gradio as gr
2
+ import torch
 
3
  from PIL import Image
4
 
5
+ # Define the function to load the YOLOv8 model and perform processing
6
+ def process_image(image_path, model_path="waste-detection-yolov8/best_p6.pt"):
7
+ """
8
+ Processes an image using a YOLOv8 model and returns the processed image.
9
+
10
+ Args:
11
+ image_path (str): Path to the input image.
12
+ model_path (str, optional): Path to the YOLOv8 model weights file. Defaults to "waste-detection-yolov8/best_p6.pt".
13
+
14
+ Returns:
15
+ PIL.Image: The processed image.
16
+ """
17
+ # Load the YOLOv8 model from the specified path
18
+ model = torch.hub.load('ultralytics/yolov8n', 'custom', path=model_path)
19
+
20
+ # Read the input image
21
+ image = Image.open(image_path)
22
+
23
+ # Convert the image to a tensor
24
+ image = model(image)
25
+
26
+ # Get the processed image from the results
27
+ processed_image = image.imgs[0]
28
+
29
+ return processed_image
30
+
31
+ # Define the Gradio interface
 
 
 
 
 
 
 
 
 
 
 
32
  interface = gr.Interface(
33
+ fn=process_image,
34
+ inputs=gr.Image(label="Input Image", type="filepath"),
35
+ outputs="image",
36
+ title="Image Processing with YOLOv8n",
37
+ description="Upload an image to process it with the YOLOv8n model.",
38
+ thumbnail=None,
39
+ article="<p>This Gradio app allows you to upload an image and process it using a YOLOv8n model.</p>",
40
  )
41
 
42
+ # Launch the interface
43
+ interface.launch(server_port=11111, server_name="localhost", enable_queue=True, allow_screenshot=False, allow_user_code=False)