Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import os
|
4 |
from PIL import Image
|
5 |
|
6 |
-
# YOLOv8
|
7 |
-
def
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Get the path to the output image
|
34 |
-
output_image_path = os.path.join(output_dir, "result", os.path.basename(input_image_path))
|
35 |
-
|
36 |
-
# Check if the image exists
|
37 |
-
if os.path.exists(output_image_path):
|
38 |
-
# Return the image directly to Gradio
|
39 |
-
return output_image_path # Return file path for Gradio to display
|
40 |
-
else:
|
41 |
-
return "Error: Output image not found."
|
42 |
-
|
43 |
-
# Create the Gradio interface
|
44 |
interface = gr.Interface(
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
)
|
51 |
|
52 |
-
# Launch the
|
53 |
-
interface.launch(
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
|
|
3 |
from PIL import Image
|
4 |
|
5 |
+
# Define the function to load the YOLOv8 model and perform processing
|
6 |
+
def process_image(image_path, model_path="waste-detection-yolov8/best_p6.pt"):
|
7 |
+
"""
|
8 |
+
Processes an image using a YOLOv8 model and returns the processed image.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
image_path (str): Path to the input image.
|
12 |
+
model_path (str, optional): Path to the YOLOv8 model weights file. Defaults to "waste-detection-yolov8/best_p6.pt".
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
PIL.Image: The processed image.
|
16 |
+
"""
|
17 |
+
# Load the YOLOv8 model from the specified path
|
18 |
+
model = torch.hub.load('ultralytics/yolov8n', 'custom', path=model_path)
|
19 |
+
|
20 |
+
# Read the input image
|
21 |
+
image = Image.open(image_path)
|
22 |
+
|
23 |
+
# Convert the image to a tensor
|
24 |
+
image = model(image)
|
25 |
+
|
26 |
+
# Get the processed image from the results
|
27 |
+
processed_image = image.imgs[0]
|
28 |
+
|
29 |
+
return processed_image
|
30 |
+
|
31 |
+
# Define the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
interface = gr.Interface(
|
33 |
+
fn=process_image,
|
34 |
+
inputs=gr.Image(label="Input Image", type="filepath"),
|
35 |
+
outputs="image",
|
36 |
+
title="Image Processing with YOLOv8n",
|
37 |
+
description="Upload an image to process it with the YOLOv8n model.",
|
38 |
+
thumbnail=None,
|
39 |
+
article="<p>This Gradio app allows you to upload an image and process it using a YOLOv8n model.</p>",
|
40 |
)
|
41 |
|
42 |
+
# Launch the interface
|
43 |
+
interface.launch(server_port=11111, server_name="localhost", enable_queue=True, allow_screenshot=False, allow_user_code=False)
|