currentlyexhausted commited on
Commit
a40fb2e
·
1 Parent(s): 6ada24f

Please work

Browse files
Files changed (1) hide show
  1. app.py +22 -18
app.py CHANGED
@@ -1,29 +1,33 @@
1
  import gradio as gr
 
2
 
3
- # Load the question generation model
4
- question_gen = gr.load("models/allenai/t5-small-squad2-question-generation")
 
5
 
6
- # Define a function to generate questions
7
- def generate_questions(text, num_questions=5):
8
- questions = []
9
- for i in range(num_questions):
10
- output = question_gen.predict(text)
11
- questions.append(output["generated_text"])
12
- return questions
13
 
14
- # Define the input and output interfaces
15
- input_text = gr.inputs.Textbox(label="Enter some text:")
16
- num_questions = gr.inputs.Number(default=5, label="Number of questions to generate:")
 
 
 
 
17
  output_text = gr.outputs.Textbox(label="Generated questions:")
18
 
19
- # Create the interface
20
  iface = gr.Interface(
21
- generate_questions,
22
- inputs=[input_text, num_questions],
23
  outputs=output_text,
24
- title="Question Generator",
25
  description="Generate questions from text using the T5-SQuAD2 model.",
26
  )
27
 
28
- # Launch the interface
29
- iface.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, T5ForConditionalGeneration
3
 
4
+ model_name = "allenai/t5-small-squad2-question-generation"
5
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
6
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
7
 
8
+ def generate_questions(input_string, max_length=80, temperature=1.0, num_return_sequences=2,
9
+ num_beams=4, top_k=90, top_p=0.9):
10
+ input_ids = tokenizer.encode(input_string, return_tensors="pt")
11
+ res = model.generate(input_ids, max_length=max_length, num_return_sequences=num_return_sequences,
12
+ num_beams=num_beams, temperature=temperature, top_k=top_k, top_p=top_p)
13
+ output = tokenizer.batch_decode(res, skip_special_tokens=True)
14
+ return output
15
 
16
+ input_text = gr.inputs.Textbox(label="Enter some text:", default="Nicejob has increased our revenue 80% since signing up")
17
+ max_length = gr.inputs.Slider(10, 150, 80, label="Max Length")
18
+ temperature = gr.inputs.Slider(0.0, 1.0, 1.0, step=0.05, label="Temperature")
19
+ num_return_sequences = gr.inputs.Slider(1, 10, 2, label="Num Return Sequences")
20
+ num_beams = gr.inputs.Slider(1, 10, 4, label="Num Beams")
21
+ top_k = gr.inputs.Slider(0, 100, 90, label="Top-k")
22
+ top_p = gr.inputs.Slider(0.0, 1.0, 0.9, step=0.05, label="Top-p")
23
  output_text = gr.outputs.Textbox(label="Generated questions:")
24
 
 
25
  iface = gr.Interface(
26
+ generate_questions,
27
+ inputs=[input_text, max_length, temperature, num_return_sequences, num_beams, top_k, top_p],
28
  outputs=output_text,
29
+ title="Question Generation",
30
  description="Generate questions from text using the T5-SQuAD2 model.",
31
  )
32
 
33
+ iface.launch()