File size: 5,151 Bytes
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn.functional as F
from torchvision import transforms
from isegm.inference.transforms import AddHorizontalFlip, SigmoidForPred, LimitLongestSide


class BasePredictor(object):
    def __init__(self, model, device,
                 net_clicks_limit=None,
                 with_flip=False,
                 zoom_in=None,
                 max_size=None,
                 **kwargs):
        self.with_flip = with_flip
        self.net_clicks_limit = net_clicks_limit
        self.original_image = None
        self.device = device
        self.zoom_in = zoom_in
        self.prev_prediction = None
        self.model_indx = 0
        self.click_models = None
        self.net_state_dict = None

        if isinstance(model, tuple):
            self.net, self.click_models = model
        else:
            self.net = model

        self.to_tensor = transforms.ToTensor()

        self.transforms = [zoom_in] if zoom_in is not None else []
        if max_size is not None:
            self.transforms.append(LimitLongestSide(max_size=max_size))
        self.transforms.append(SigmoidForPred())
        if with_flip:
            self.transforms.append(AddHorizontalFlip())

    def set_input_image(self, image):
        image_nd = self.to_tensor(image)
        for transform in self.transforms:
            transform.reset()
        self.original_image = image_nd.to(self.device)
        if len(self.original_image.shape) == 3:
            self.original_image = self.original_image.unsqueeze(0)
        self.prev_prediction = torch.zeros_like(self.original_image[:, :1, :, :])

    def get_prediction(self, clicker, prev_mask=None):
        clicks_list = clicker.get_clicks()

        if self.click_models is not None:
            model_indx = min(clicker.click_indx_offset + len(clicks_list), len(self.click_models)) - 1
            if model_indx != self.model_indx:
                self.model_indx = model_indx
                self.net = self.click_models[model_indx]

        input_image = self.original_image
        if prev_mask is None:
            prev_mask = self.prev_prediction
        if hasattr(self.net, 'with_prev_mask') and self.net.with_prev_mask:
            input_image = torch.cat((input_image, prev_mask), dim=1)
        image_nd, clicks_lists, is_image_changed = self.apply_transforms(
            input_image, [clicks_list]
        )

        pred_logits = self._get_prediction(image_nd, clicks_lists, is_image_changed)
        prediction = F.interpolate(pred_logits, mode='bilinear', align_corners=True,
                                   size=image_nd.size()[2:])

        for t in reversed(self.transforms):
            prediction = t.inv_transform(prediction)

        if self.zoom_in is not None and self.zoom_in.check_possible_recalculation():
            return self.get_prediction(clicker)

        self.prev_prediction = prediction
        return prediction.cpu().numpy()[0, 0]

    def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
        points_nd = self.get_points_nd(clicks_lists)
        return self.net(image_nd, points_nd)['instances']

    def _get_transform_states(self):
        return [x.get_state() for x in self.transforms]

    def _set_transform_states(self, states):
        assert len(states) == len(self.transforms)
        for state, transform in zip(states, self.transforms):
            transform.set_state(state)

    def apply_transforms(self, image_nd, clicks_lists):
        is_image_changed = False
        for t in self.transforms:
            image_nd, clicks_lists = t.transform(image_nd, clicks_lists)
            is_image_changed |= t.image_changed

        return image_nd, clicks_lists, is_image_changed

    def get_points_nd(self, clicks_lists):
        total_clicks = []
        num_pos_clicks = [sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists]
        num_neg_clicks = [len(clicks_list) - num_pos for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)]
        num_max_points = max(num_pos_clicks + num_neg_clicks)
        if self.net_clicks_limit is not None:
            num_max_points = min(self.net_clicks_limit, num_max_points)
        num_max_points = max(1, num_max_points)

        for clicks_list in clicks_lists:
            clicks_list = clicks_list[:self.net_clicks_limit]
            pos_clicks = [click.coords_and_indx for click in clicks_list if click.is_positive]
            pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [(-1, -1, -1)]

            neg_clicks = [click.coords_and_indx for click in clicks_list if not click.is_positive]
            neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [(-1, -1, -1)]
            total_clicks.append(pos_clicks + neg_clicks)

        return torch.tensor(total_clicks, device=self.device)

    def get_states(self):
        return {
            'transform_states': self._get_transform_states(),
            'prev_prediction': self.prev_prediction.clone()
        }

    def set_states(self, states):
        self._set_transform_states(states['transform_states'])
        self.prev_prediction = states['prev_prediction']