Spaces:
Runtime error
Runtime error
File size: 6,363 Bytes
2cdd41c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from contextlib import ExitStack
import torch
from torch import nn
import torch.nn.functional as F
from .basic_blocks import SeparableConv2d
from .resnet import ResNetBackbone
from isegm.model import ops
class DeepLabV3Plus(nn.Module):
def __init__(self, backbone='resnet50', norm_layer=nn.BatchNorm2d,
backbone_norm_layer=None,
ch=256,
project_dropout=0.5,
inference_mode=False,
**kwargs):
super(DeepLabV3Plus, self).__init__()
if backbone_norm_layer is None:
backbone_norm_layer = norm_layer
self.backbone_name = backbone
self.norm_layer = norm_layer
self.backbone_norm_layer = backbone_norm_layer
self.inference_mode = False
self.ch = ch
self.aspp_in_channels = 2048
self.skip_project_in_channels = 256 # layer 1 out_channels
self._kwargs = kwargs
if backbone == 'resnet34':
self.aspp_in_channels = 512
self.skip_project_in_channels = 64
self.backbone = ResNetBackbone(backbone=self.backbone_name, pretrained_base=False,
norm_layer=self.backbone_norm_layer, **kwargs)
self.head = _DeepLabHead(in_channels=ch + 32, mid_channels=ch, out_channels=ch,
norm_layer=self.norm_layer)
self.skip_project = _SkipProject(self.skip_project_in_channels, 32, norm_layer=self.norm_layer)
self.aspp = _ASPP(in_channels=self.aspp_in_channels,
atrous_rates=[12, 24, 36],
out_channels=ch,
project_dropout=project_dropout,
norm_layer=self.norm_layer)
if inference_mode:
self.set_prediction_mode()
def load_pretrained_weights(self):
pretrained = ResNetBackbone(backbone=self.backbone_name, pretrained_base=True,
norm_layer=self.backbone_norm_layer, **self._kwargs)
backbone_state_dict = self.backbone.state_dict()
pretrained_state_dict = pretrained.state_dict()
backbone_state_dict.update(pretrained_state_dict)
self.backbone.load_state_dict(backbone_state_dict)
if self.inference_mode:
for param in self.backbone.parameters():
param.requires_grad = False
def set_prediction_mode(self):
self.inference_mode = True
self.eval()
def forward(self, x, additional_features=None):
with ExitStack() as stack:
if self.inference_mode:
stack.enter_context(torch.no_grad())
c1, _, c3, c4 = self.backbone(x, additional_features)
c1 = self.skip_project(c1)
x = self.aspp(c4)
x = F.interpolate(x, c1.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x, c1), dim=1)
x = self.head(x)
return x,
class _SkipProject(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer=nn.BatchNorm2d):
super(_SkipProject, self).__init__()
_activation = ops.select_activation_function("relu")
self.skip_project = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
norm_layer(out_channels),
_activation()
)
def forward(self, x):
return self.skip_project(x)
class _DeepLabHead(nn.Module):
def __init__(self, out_channels, in_channels, mid_channels=256, norm_layer=nn.BatchNorm2d):
super(_DeepLabHead, self).__init__()
self.block = nn.Sequential(
SeparableConv2d(in_channels=in_channels, out_channels=mid_channels, dw_kernel=3,
dw_padding=1, activation='relu', norm_layer=norm_layer),
SeparableConv2d(in_channels=mid_channels, out_channels=mid_channels, dw_kernel=3,
dw_padding=1, activation='relu', norm_layer=norm_layer),
nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1)
)
def forward(self, x):
return self.block(x)
class _ASPP(nn.Module):
def __init__(self, in_channels, atrous_rates, out_channels=256,
project_dropout=0.5, norm_layer=nn.BatchNorm2d):
super(_ASPP, self).__init__()
b0 = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=False),
norm_layer(out_channels),
nn.ReLU()
)
rate1, rate2, rate3 = tuple(atrous_rates)
b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
self.concurent = nn.ModuleList([b0, b1, b2, b3, b4])
project = [
nn.Conv2d(in_channels=5*out_channels, out_channels=out_channels,
kernel_size=1, bias=False),
norm_layer(out_channels),
nn.ReLU()
]
if project_dropout > 0:
project.append(nn.Dropout(project_dropout))
self.project = nn.Sequential(*project)
def forward(self, x):
x = torch.cat([block(x) for block in self.concurent], dim=1)
return self.project(x)
class _AsppPooling(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer):
super(_AsppPooling, self).__init__()
self.gap = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=1, bias=False),
norm_layer(out_channels),
nn.ReLU()
)
def forward(self, x):
pool = self.gap(x)
return F.interpolate(pool, x.size()[2:], mode='bilinear', align_corners=True)
def _ASPPConv(in_channels, out_channels, atrous_rate, norm_layer):
block = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=3, padding=atrous_rate,
dilation=atrous_rate, bias=False),
norm_layer(out_channels),
nn.ReLU()
)
return block
|