File size: 2,197 Bytes
1615d09
 
2cdd41c
 
 
 
 
 
 
 
1615d09
 
 
2cdd41c
 
 
 
 
 
1615d09
2cdd41c
1615d09
 
2cdd41c
 
1615d09
2cdd41c
 
1615d09
2cdd41c
1615d09
2cdd41c
1615d09
2cdd41c
 
1615d09
2cdd41c
 
 
 
 
1615d09
2cdd41c
 
 
 
1615d09
2cdd41c
 
 
 
 
 
 
 
 
 
 
1615d09
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from pathlib import Path

import cv2
import numpy as np

from isegm.data.base import ISDataset
from isegm.data.sample import DSample


class ImagesDirDataset(ISDataset):
    def __init__(
        self, dataset_path, images_dir_name="images", masks_dir_name="masks", **kwargs
    ):
        super(ImagesDirDataset, self).__init__(**kwargs)

        self.dataset_path = Path(dataset_path)
        self._images_path = self.dataset_path / images_dir_name
        self._insts_path = self.dataset_path / masks_dir_name

        images_list = [x for x in sorted(self._images_path.glob("*.*"))]

        samples = {x.stem: {"image": x, "masks": []} for x in images_list}
        for mask_path in self._insts_path.glob("*.*"):
            mask_name = mask_path.stem
            if mask_name in samples:
                samples[mask_name]["masks"].append(mask_path)
                continue

            mask_name_split = mask_name.split("_")
            if mask_name_split[-1].isdigit():
                mask_name = "_".join(mask_name_split[:-1])
                assert mask_name in samples
                samples[mask_name]["masks"].append(mask_path)

        for x in samples.values():
            assert len(x["masks"]) > 0, x["image"]

        self.dataset_samples = [v for k, v in sorted(samples.items())]

    def get_sample(self, index) -> DSample:
        sample = self.dataset_samples[index]
        image_path = str(sample["image"])

        objects = []
        ignored_regions = []
        masks = []
        for indx, mask_path in enumerate(sample["masks"]):
            gt_mask = cv2.imread(str(mask_path))[:, :, 0].astype(np.int32)
            instances_mask = np.zeros_like(gt_mask)
            instances_mask[gt_mask == 128] = 2
            instances_mask[gt_mask > 128] = 1
            masks.append(instances_mask)
            objects.append((indx, 1))
            ignored_regions.append((indx, 2))

        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        return DSample(
            image,
            np.stack(masks, axis=2),
            objects_ids=objects,
            ignore_ids=ignored_regions,
            sample_id=index,
        )