Spaces:
Runtime error
Runtime error
File size: 6,824 Bytes
2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import random
import cv2
import numpy as np
from albumentations import DualTransform, ImageOnlyTransform
from albumentations.augmentations import functional as F
from albumentations.core.serialization import SERIALIZABLE_REGISTRY
from albumentations.core.transforms_interface import to_tuple
from isegm.utils.misc import (clamp_bbox, expand_bbox, get_bbox_from_mask,
get_labels_with_sizes)
class UniformRandomResize(DualTransform):
def __init__(
self,
scale_range=(0.9, 1.1),
interpolation=cv2.INTER_LINEAR,
always_apply=False,
p=1,
):
super().__init__(always_apply, p)
self.scale_range = scale_range
self.interpolation = interpolation
def get_params_dependent_on_targets(self, params):
scale = random.uniform(*self.scale_range)
height = int(round(params["image"].shape[0] * scale))
width = int(round(params["image"].shape[1] * scale))
return {"new_height": height, "new_width": width}
def apply(
self, img, new_height=0, new_width=0, interpolation=cv2.INTER_LINEAR, **params
):
return F.resize(
img, height=new_height, width=new_width, interpolation=interpolation
)
def apply_to_keypoint(self, keypoint, new_height=0, new_width=0, **params):
scale_x = new_width / params["cols"]
scale_y = new_height / params["rows"]
return F.keypoint_scale(keypoint, scale_x, scale_y)
def get_transform_init_args_names(self):
return "scale_range", "interpolation"
@property
def targets_as_params(self):
return ["image"]
class ZoomIn(DualTransform):
def __init__(
self,
height,
width,
bbox_jitter=0.1,
expansion_ratio=1.4,
min_crop_size=200,
min_area=100,
always_resize=False,
always_apply=False,
p=0.5,
):
super(ZoomIn, self).__init__(always_apply, p)
self.height = height
self.width = width
self.bbox_jitter = to_tuple(bbox_jitter)
self.expansion_ratio = expansion_ratio
self.min_crop_size = min_crop_size
self.min_area = min_area
self.always_resize = always_resize
def apply(self, img, selected_object, bbox, **params):
if selected_object is None:
if self.always_resize:
img = F.resize(img, height=self.height, width=self.width)
return img
rmin, rmax, cmin, cmax = bbox
img = img[rmin : rmax + 1, cmin : cmax + 1]
img = F.resize(img, height=self.height, width=self.width)
return img
def apply_to_mask(self, mask, selected_object, bbox, **params):
if selected_object is None:
if self.always_resize:
mask = F.resize(
mask,
height=self.height,
width=self.width,
interpolation=cv2.INTER_NEAREST,
)
return mask
rmin, rmax, cmin, cmax = bbox
mask = mask[rmin : rmax + 1, cmin : cmax + 1]
if isinstance(selected_object, tuple):
layer_indx, mask_id = selected_object
obj_mask = mask[:, :, layer_indx] == mask_id
new_mask = np.zeros_like(mask)
new_mask[:, :, layer_indx][obj_mask] = mask_id
else:
obj_mask = mask == selected_object
new_mask = mask.copy()
new_mask[np.logical_not(obj_mask)] = 0
new_mask = F.resize(
new_mask,
height=self.height,
width=self.width,
interpolation=cv2.INTER_NEAREST,
)
return new_mask
def get_params_dependent_on_targets(self, params):
instances = params["mask"]
is_mask_layer = len(instances.shape) > 2
candidates = []
if is_mask_layer:
for layer_indx in range(instances.shape[2]):
labels, areas = get_labels_with_sizes(instances[:, :, layer_indx])
candidates.extend(
[
(layer_indx, obj_id)
for obj_id, area in zip(labels, areas)
if area > self.min_area
]
)
else:
labels, areas = get_labels_with_sizes(instances)
candidates = [
obj_id for obj_id, area in zip(labels, areas) if area > self.min_area
]
selected_object = None
bbox = None
if candidates:
selected_object = random.choice(candidates)
if is_mask_layer:
layer_indx, mask_id = selected_object
obj_mask = instances[:, :, layer_indx] == mask_id
else:
obj_mask = instances == selected_object
bbox = get_bbox_from_mask(obj_mask)
if isinstance(self.expansion_ratio, tuple):
expansion_ratio = random.uniform(*self.expansion_ratio)
else:
expansion_ratio = self.expansion_ratio
bbox = expand_bbox(bbox, expansion_ratio, self.min_crop_size)
bbox = self._jitter_bbox(bbox)
bbox = clamp_bbox(bbox, 0, obj_mask.shape[0] - 1, 0, obj_mask.shape[1] - 1)
return {"selected_object": selected_object, "bbox": bbox}
def _jitter_bbox(self, bbox):
rmin, rmax, cmin, cmax = bbox
height = rmax - rmin + 1
width = cmax - cmin + 1
rmin = int(rmin + random.uniform(*self.bbox_jitter) * height)
rmax = int(rmax + random.uniform(*self.bbox_jitter) * height)
cmin = int(cmin + random.uniform(*self.bbox_jitter) * width)
cmax = int(cmax + random.uniform(*self.bbox_jitter) * width)
return rmin, rmax, cmin, cmax
def apply_to_bbox(self, bbox, **params):
raise NotImplementedError
def apply_to_keypoint(self, keypoint, **params):
raise NotImplementedError
@property
def targets_as_params(self):
return ["mask"]
def get_transform_init_args_names(self):
return (
"height",
"width",
"bbox_jitter",
"expansion_ratio",
"min_crop_size",
"min_area",
"always_resize",
)
def remove_image_only_transforms(sdict):
if not "transforms" in sdict:
return sdict
keep_transforms = []
for tdict in sdict["transforms"]:
cls = SERIALIZABLE_REGISTRY[tdict["__class_fullname__"]]
if "transforms" in tdict:
keep_transforms.append(remove_image_only_transforms(tdict))
elif not issubclass(cls, ImageOnlyTransform):
keep_transforms.append(tdict)
sdict["transforms"] = keep_transforms
return sdict
|