Spaces:
Runtime error
Runtime error
File size: 19,323 Bytes
1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import logging
import os
import random
from collections import defaultdict
from copy import deepcopy
import cv2
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from isegm.utils.distributed import (get_dp_wrapper, get_sampler,
reduce_loss_dict)
from isegm.utils.log import SummaryWriterAvg, TqdmToLogger, logger
from isegm.utils.misc import save_checkpoint
from isegm.utils.serialization import get_config_repr
from isegm.utils.vis import draw_points, draw_probmap
from .optimizer import get_optimizer
class ISTrainer(object):
def __init__(
self,
model,
cfg,
model_cfg,
loss_cfg,
trainset,
valset,
optimizer="adam",
optimizer_params=None,
image_dump_interval=200,
checkpoint_interval=10,
tb_dump_period=25,
max_interactive_points=0,
lr_scheduler=None,
metrics=None,
additional_val_metrics=None,
net_inputs=("images", "points"),
max_num_next_clicks=0,
click_models=None,
prev_mask_drop_prob=0.0,
):
self.cfg = cfg
self.model_cfg = model_cfg
self.max_interactive_points = max_interactive_points
self.loss_cfg = loss_cfg
self.val_loss_cfg = deepcopy(loss_cfg)
self.tb_dump_period = tb_dump_period
self.net_inputs = net_inputs
self.max_num_next_clicks = max_num_next_clicks
self.click_models = click_models
self.prev_mask_drop_prob = prev_mask_drop_prob
if cfg.distributed:
cfg.batch_size //= cfg.ngpus
cfg.val_batch_size //= cfg.ngpus
if metrics is None:
metrics = []
self.train_metrics = metrics
self.val_metrics = deepcopy(metrics)
if additional_val_metrics is not None:
self.val_metrics.extend(additional_val_metrics)
self.checkpoint_interval = checkpoint_interval
self.image_dump_interval = image_dump_interval
self.task_prefix = ""
self.sw = None
self.trainset = trainset
self.valset = valset
logger.info(
f"Dataset of {trainset.get_samples_number()} samples was loaded for training."
)
logger.info(
f"Dataset of {valset.get_samples_number()} samples was loaded for validation."
)
self.train_data = DataLoader(
trainset,
cfg.batch_size,
sampler=get_sampler(trainset, shuffle=True, distributed=cfg.distributed),
drop_last=True,
pin_memory=True,
num_workers=cfg.workers,
)
self.val_data = DataLoader(
valset,
cfg.val_batch_size,
sampler=get_sampler(valset, shuffle=False, distributed=cfg.distributed),
drop_last=True,
pin_memory=True,
num_workers=cfg.workers,
)
self.optim = get_optimizer(model, optimizer, optimizer_params)
model = self._load_weights(model)
if cfg.multi_gpu:
model = get_dp_wrapper(cfg.distributed)(
model, device_ids=cfg.gpu_ids, output_device=cfg.gpu_ids[0]
)
if self.is_master:
logger.info(model)
logger.info(get_config_repr(model._config))
self.device = cfg.device
self.net = model.to(self.device)
self.lr = optimizer_params["lr"]
if lr_scheduler is not None:
self.lr_scheduler = lr_scheduler(optimizer=self.optim)
if cfg.start_epoch > 0:
for _ in range(cfg.start_epoch):
self.lr_scheduler.step()
self.tqdm_out = TqdmToLogger(logger, level=logging.INFO)
if self.click_models is not None:
for click_model in self.click_models:
for param in click_model.parameters():
param.requires_grad = False
click_model.to(self.device)
click_model.eval()
def run(self, num_epochs, start_epoch=None, validation=True):
if start_epoch is None:
start_epoch = self.cfg.start_epoch
logger.info(f"Starting Epoch: {start_epoch}")
logger.info(f"Total Epochs: {num_epochs}")
for epoch in range(start_epoch, num_epochs):
self.training(epoch)
if validation:
self.validation(epoch)
def training(self, epoch):
if self.sw is None and self.is_master:
self.sw = SummaryWriterAvg(
log_dir=str(self.cfg.LOGS_PATH),
flush_secs=10,
dump_period=self.tb_dump_period,
)
if self.cfg.distributed:
self.train_data.sampler.set_epoch(epoch)
log_prefix = "Train" + self.task_prefix.capitalize()
tbar = (
tqdm(self.train_data, file=self.tqdm_out, ncols=100)
if self.is_master
else self.train_data
)
for metric in self.train_metrics:
metric.reset_epoch_stats()
self.net.train()
train_loss = 0.0
for i, batch_data in enumerate(tbar):
global_step = epoch * len(self.train_data) + i
loss, losses_logging, splitted_batch_data, outputs = self.batch_forward(
batch_data
)
self.optim.zero_grad()
loss.backward()
self.optim.step()
losses_logging["overall"] = loss
reduce_loss_dict(losses_logging)
train_loss += losses_logging["overall"].item()
if self.is_master:
for loss_name, loss_value in losses_logging.items():
self.sw.add_scalar(
tag=f"{log_prefix}Losses/{loss_name}",
value=loss_value.item(),
global_step=global_step,
)
for k, v in self.loss_cfg.items():
if (
"_loss" in k
and hasattr(v, "log_states")
and self.loss_cfg.get(k + "_weight", 0.0) > 0
):
v.log_states(self.sw, f"{log_prefix}Losses/{k}", global_step)
if (
self.image_dump_interval > 0
and global_step % self.image_dump_interval == 0
):
self.save_visualization(
splitted_batch_data, outputs, global_step, prefix="train"
)
self.sw.add_scalar(
tag=f"{log_prefix}States/learning_rate",
value=self.lr
if not hasattr(self, "lr_scheduler")
else self.lr_scheduler.get_lr()[-1],
global_step=global_step,
)
tbar.set_description(
f"Epoch {epoch}, training loss {train_loss/(i+1):.4f}"
)
for metric in self.train_metrics:
metric.log_states(
self.sw, f"{log_prefix}Metrics/{metric.name}", global_step
)
if self.is_master:
for metric in self.train_metrics:
self.sw.add_scalar(
tag=f"{log_prefix}Metrics/{metric.name}",
value=metric.get_epoch_value(),
global_step=epoch,
disable_avg=True,
)
save_checkpoint(
self.net,
self.cfg.CHECKPOINTS_PATH,
prefix=self.task_prefix,
epoch=None,
multi_gpu=self.cfg.multi_gpu,
)
if isinstance(self.checkpoint_interval, (list, tuple)):
checkpoint_interval = [
x for x in self.checkpoint_interval if x[0] <= epoch
][-1][1]
else:
checkpoint_interval = self.checkpoint_interval
if epoch % checkpoint_interval == 0:
save_checkpoint(
self.net,
self.cfg.CHECKPOINTS_PATH,
prefix=self.task_prefix,
epoch=epoch,
multi_gpu=self.cfg.multi_gpu,
)
if hasattr(self, "lr_scheduler"):
self.lr_scheduler.step()
def validation(self, epoch):
if self.sw is None and self.is_master:
self.sw = SummaryWriterAvg(
log_dir=str(self.cfg.LOGS_PATH),
flush_secs=10,
dump_period=self.tb_dump_period,
)
log_prefix = "Val" + self.task_prefix.capitalize()
tbar = (
tqdm(self.val_data, file=self.tqdm_out, ncols=100)
if self.is_master
else self.val_data
)
for metric in self.val_metrics:
metric.reset_epoch_stats()
val_loss = 0
losses_logging = defaultdict(list)
self.net.eval()
for i, batch_data in enumerate(tbar):
global_step = epoch * len(self.val_data) + i
(
loss,
batch_losses_logging,
splitted_batch_data,
outputs,
) = self.batch_forward(batch_data, validation=True)
batch_losses_logging["overall"] = loss
reduce_loss_dict(batch_losses_logging)
for loss_name, loss_value in batch_losses_logging.items():
losses_logging[loss_name].append(loss_value.item())
val_loss += batch_losses_logging["overall"].item()
if self.is_master:
tbar.set_description(
f"Epoch {epoch}, validation loss: {val_loss/(i + 1):.4f}"
)
for metric in self.val_metrics:
metric.log_states(
self.sw, f"{log_prefix}Metrics/{metric.name}", global_step
)
if self.is_master:
for loss_name, loss_values in losses_logging.items():
self.sw.add_scalar(
tag=f"{log_prefix}Losses/{loss_name}",
value=np.array(loss_values).mean(),
global_step=epoch,
disable_avg=True,
)
for metric in self.val_metrics:
self.sw.add_scalar(
tag=f"{log_prefix}Metrics/{metric.name}",
value=metric.get_epoch_value(),
global_step=epoch,
disable_avg=True,
)
def batch_forward(self, batch_data, validation=False):
metrics = self.val_metrics if validation else self.train_metrics
losses_logging = dict()
with torch.set_grad_enabled(not validation):
batch_data = {k: v.to(self.device) for k, v in batch_data.items()}
image, gt_mask, points = (
batch_data["images"],
batch_data["instances"],
batch_data["points"],
)
orig_image, orig_gt_mask, orig_points = (
image.clone(),
gt_mask.clone(),
points.clone(),
)
prev_output = torch.zeros_like(image, dtype=torch.float32)[:, :1, :, :]
last_click_indx = None
with torch.no_grad():
num_iters = random.randint(0, self.max_num_next_clicks)
for click_indx in range(num_iters):
last_click_indx = click_indx
if not validation:
self.net.eval()
if self.click_models is None or click_indx >= len(
self.click_models
):
eval_model = self.net
else:
eval_model = self.click_models[click_indx]
net_input = (
torch.cat((image, prev_output), dim=1)
if self.net.with_prev_mask
else image
)
prev_output = torch.sigmoid(
eval_model(net_input, points)["instances"]
)
points = get_next_points(
prev_output, orig_gt_mask, points, click_indx + 1
)
if not validation:
self.net.train()
if (
self.net.with_prev_mask
and self.prev_mask_drop_prob > 0
and last_click_indx is not None
):
zero_mask = (
np.random.random(size=prev_output.size(0))
< self.prev_mask_drop_prob
)
prev_output[zero_mask] = torch.zeros_like(prev_output[zero_mask])
batch_data["points"] = points
net_input = (
torch.cat((image, prev_output), dim=1)
if self.net.with_prev_mask
else image
)
output = self.net(net_input, points)
loss = 0.0
loss = self.add_loss(
"instance_loss",
loss,
losses_logging,
validation,
lambda: (output["instances"], batch_data["instances"]),
)
loss = self.add_loss(
"instance_aux_loss",
loss,
losses_logging,
validation,
lambda: (output["instances_aux"], batch_data["instances"]),
)
if self.is_master:
with torch.no_grad():
for m in metrics:
m.update(
*(output.get(x) for x in m.pred_outputs),
*(batch_data[x] for x in m.gt_outputs),
)
return loss, losses_logging, batch_data, output
def add_loss(
self, loss_name, total_loss, losses_logging, validation, lambda_loss_inputs
):
loss_cfg = self.loss_cfg if not validation else self.val_loss_cfg
loss_weight = loss_cfg.get(loss_name + "_weight", 0.0)
if loss_weight > 0.0:
loss_criterion = loss_cfg.get(loss_name)
loss = loss_criterion(*lambda_loss_inputs())
loss = torch.mean(loss)
losses_logging[loss_name] = loss
loss = loss_weight * loss
total_loss = total_loss + loss
return total_loss
def save_visualization(self, splitted_batch_data, outputs, global_step, prefix):
output_images_path = self.cfg.VIS_PATH / prefix
if self.task_prefix:
output_images_path /= self.task_prefix
if not output_images_path.exists():
output_images_path.mkdir(parents=True)
image_name_prefix = f"{global_step:06d}"
def _save_image(suffix, image):
cv2.imwrite(
str(output_images_path / f"{image_name_prefix}_{suffix}.jpg"),
image,
[cv2.IMWRITE_JPEG_QUALITY, 85],
)
images = splitted_batch_data["images"]
points = splitted_batch_data["points"]
instance_masks = splitted_batch_data["instances"]
gt_instance_masks = instance_masks.cpu().numpy()
predicted_instance_masks = (
torch.sigmoid(outputs["instances"]).detach().cpu().numpy()
)
points = points.detach().cpu().numpy()
image_blob, points = images[0], points[0]
gt_mask = np.squeeze(gt_instance_masks[0], axis=0)
predicted_mask = np.squeeze(predicted_instance_masks[0], axis=0)
image = image_blob.cpu().numpy() * 255
image = image.transpose((1, 2, 0))
image_with_points = draw_points(
image, points[: self.max_interactive_points], (0, 255, 0)
)
image_with_points = draw_points(
image_with_points, points[self.max_interactive_points :], (0, 0, 255)
)
gt_mask[gt_mask < 0] = 0.25
gt_mask = draw_probmap(gt_mask)
predicted_mask = draw_probmap(predicted_mask)
viz_image = np.hstack((image_with_points, gt_mask, predicted_mask)).astype(
np.uint8
)
_save_image("instance_segmentation", viz_image[:, :, ::-1])
def _load_weights(self, net):
if self.cfg.weights is not None:
if os.path.isfile(self.cfg.weights):
load_weights(net, self.cfg.weights)
self.cfg.weights = None
else:
raise RuntimeError(f"=> no checkpoint found at '{self.cfg.weights}'")
elif self.cfg.resume_exp is not None:
checkpoints = list(
self.cfg.CHECKPOINTS_PATH.glob(f"{self.cfg.resume_prefix}*.pth")
)
assert len(checkpoints) == 1
checkpoint_path = checkpoints[0]
logger.info(f"Load checkpoint from path: {checkpoint_path}")
load_weights(net, str(checkpoint_path))
return net
@property
def is_master(self):
return self.cfg.local_rank == 0
def get_next_points(pred, gt, points, click_indx, pred_thresh=0.49):
assert click_indx > 0
pred = pred.cpu().numpy()[:, 0, :, :]
gt = gt.cpu().numpy()[:, 0, :, :] > 0.5
fn_mask = np.logical_and(gt, pred < pred_thresh)
fp_mask = np.logical_and(np.logical_not(gt), pred > pred_thresh)
fn_mask = np.pad(fn_mask, ((0, 0), (1, 1), (1, 1)), "constant").astype(np.uint8)
fp_mask = np.pad(fp_mask, ((0, 0), (1, 1), (1, 1)), "constant").astype(np.uint8)
num_points = points.size(1) // 2
points = points.clone()
for bindx in range(fn_mask.shape[0]):
fn_mask_dt = cv2.distanceTransform(fn_mask[bindx], cv2.DIST_L2, 5)[1:-1, 1:-1]
fp_mask_dt = cv2.distanceTransform(fp_mask[bindx], cv2.DIST_L2, 5)[1:-1, 1:-1]
fn_max_dist = np.max(fn_mask_dt)
fp_max_dist = np.max(fp_mask_dt)
is_positive = fn_max_dist > fp_max_dist
dt = fn_mask_dt if is_positive else fp_mask_dt
inner_mask = dt > max(fn_max_dist, fp_max_dist) / 2.0
indices = np.argwhere(inner_mask)
if len(indices) > 0:
coords = indices[np.random.randint(0, len(indices))]
if is_positive:
points[bindx, num_points - click_indx, 0] = float(coords[0])
points[bindx, num_points - click_indx, 1] = float(coords[1])
points[bindx, num_points - click_indx, 2] = float(click_indx)
else:
points[bindx, 2 * num_points - click_indx, 0] = float(coords[0])
points[bindx, 2 * num_points - click_indx, 1] = float(coords[1])
points[bindx, 2 * num_points - click_indx, 2] = float(click_indx)
return points
def load_weights(model, path_to_weights):
current_state_dict = model.state_dict()
new_state_dict = torch.load(path_to_weights, map_location="cpu")["state_dict"]
current_state_dict.update(new_state_dict)
model.load_state_dict(current_state_dict)
|