File size: 19,323 Bytes
1615d09
2cdd41c
 
 
1615d09
2cdd41c
 
 
1615d09
2cdd41c
1615d09
2cdd41c
1615d09
 
 
2cdd41c
 
1615d09
 
2cdd41c
 
 
 
1615d09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
2cdd41c
 
 
 
 
1615d09
 
 
 
 
 
2cdd41c
 
1615d09
 
2cdd41c
1615d09
 
 
2cdd41c
 
 
1615d09
 
2cdd41c
1615d09
 
 
2cdd41c
 
 
 
 
 
1615d09
 
 
2cdd41c
 
 
 
 
 
 
1615d09
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
 
2cdd41c
 
 
 
 
 
 
1615d09
 
 
 
 
2cdd41c
 
 
 
1615d09
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
1615d09
 
 
2cdd41c
 
 
 
 
1615d09
2cdd41c
 
1615d09
2cdd41c
 
 
1615d09
 
 
 
 
2cdd41c
 
1615d09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdd41c
1615d09
 
 
2cdd41c
 
 
1615d09
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdd41c
 
1615d09
 
 
2cdd41c
 
 
 
1615d09
 
 
 
 
 
 
 
 
2cdd41c
 
 
 
1615d09
 
 
 
 
 
 
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
 
1615d09
 
 
 
 
 
 
 
2cdd41c
 
 
 
1615d09
2cdd41c
 
1615d09
 
 
2cdd41c
1615d09
 
 
2cdd41c
 
 
1615d09
 
 
 
 
 
2cdd41c
 
1615d09
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
1615d09
 
 
 
 
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
 
 
2cdd41c
 
 
 
1615d09
 
 
 
 
 
 
 
2cdd41c
1615d09
 
 
2cdd41c
 
 
 
1615d09
 
 
 
 
 
 
 
 
2cdd41c
 
1615d09
2cdd41c
1615d09
 
 
 
 
2cdd41c
 
 
1615d09
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdd41c
 
 
 
1615d09
 
 
 
2cdd41c
 
1615d09
 
 
2cdd41c
1615d09
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
2cdd41c
 
1615d09
 
 
 
 
2cdd41c
1615d09
 
 
2cdd41c
 
1615d09
 
 
2cdd41c
 
 
 
 
 
 
 
 
1615d09
 
 
 
 
 
2cdd41c
 
 
 
1615d09
 
 
2cdd41c
1615d09
2cdd41c
 
 
 
 
 
 
 
 
1615d09
 
 
2cdd41c
 
 
1615d09
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
 
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
2cdd41c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import logging
import os
import random
from collections import defaultdict
from copy import deepcopy

import cv2
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm

from isegm.utils.distributed import (get_dp_wrapper, get_sampler,
                                     reduce_loss_dict)
from isegm.utils.log import SummaryWriterAvg, TqdmToLogger, logger
from isegm.utils.misc import save_checkpoint
from isegm.utils.serialization import get_config_repr
from isegm.utils.vis import draw_points, draw_probmap

from .optimizer import get_optimizer


class ISTrainer(object):
    def __init__(
        self,
        model,
        cfg,
        model_cfg,
        loss_cfg,
        trainset,
        valset,
        optimizer="adam",
        optimizer_params=None,
        image_dump_interval=200,
        checkpoint_interval=10,
        tb_dump_period=25,
        max_interactive_points=0,
        lr_scheduler=None,
        metrics=None,
        additional_val_metrics=None,
        net_inputs=("images", "points"),
        max_num_next_clicks=0,
        click_models=None,
        prev_mask_drop_prob=0.0,
    ):
        self.cfg = cfg
        self.model_cfg = model_cfg
        self.max_interactive_points = max_interactive_points
        self.loss_cfg = loss_cfg
        self.val_loss_cfg = deepcopy(loss_cfg)
        self.tb_dump_period = tb_dump_period
        self.net_inputs = net_inputs
        self.max_num_next_clicks = max_num_next_clicks

        self.click_models = click_models
        self.prev_mask_drop_prob = prev_mask_drop_prob

        if cfg.distributed:
            cfg.batch_size //= cfg.ngpus
            cfg.val_batch_size //= cfg.ngpus

        if metrics is None:
            metrics = []
        self.train_metrics = metrics
        self.val_metrics = deepcopy(metrics)
        if additional_val_metrics is not None:
            self.val_metrics.extend(additional_val_metrics)

        self.checkpoint_interval = checkpoint_interval
        self.image_dump_interval = image_dump_interval
        self.task_prefix = ""
        self.sw = None

        self.trainset = trainset
        self.valset = valset

        logger.info(
            f"Dataset of {trainset.get_samples_number()} samples was loaded for training."
        )
        logger.info(
            f"Dataset of {valset.get_samples_number()} samples was loaded for validation."
        )

        self.train_data = DataLoader(
            trainset,
            cfg.batch_size,
            sampler=get_sampler(trainset, shuffle=True, distributed=cfg.distributed),
            drop_last=True,
            pin_memory=True,
            num_workers=cfg.workers,
        )

        self.val_data = DataLoader(
            valset,
            cfg.val_batch_size,
            sampler=get_sampler(valset, shuffle=False, distributed=cfg.distributed),
            drop_last=True,
            pin_memory=True,
            num_workers=cfg.workers,
        )

        self.optim = get_optimizer(model, optimizer, optimizer_params)
        model = self._load_weights(model)

        if cfg.multi_gpu:
            model = get_dp_wrapper(cfg.distributed)(
                model, device_ids=cfg.gpu_ids, output_device=cfg.gpu_ids[0]
            )

        if self.is_master:
            logger.info(model)
            logger.info(get_config_repr(model._config))

        self.device = cfg.device
        self.net = model.to(self.device)
        self.lr = optimizer_params["lr"]

        if lr_scheduler is not None:
            self.lr_scheduler = lr_scheduler(optimizer=self.optim)
            if cfg.start_epoch > 0:
                for _ in range(cfg.start_epoch):
                    self.lr_scheduler.step()

        self.tqdm_out = TqdmToLogger(logger, level=logging.INFO)

        if self.click_models is not None:
            for click_model in self.click_models:
                for param in click_model.parameters():
                    param.requires_grad = False
                click_model.to(self.device)
                click_model.eval()

    def run(self, num_epochs, start_epoch=None, validation=True):
        if start_epoch is None:
            start_epoch = self.cfg.start_epoch

        logger.info(f"Starting Epoch: {start_epoch}")
        logger.info(f"Total Epochs: {num_epochs}")
        for epoch in range(start_epoch, num_epochs):
            self.training(epoch)
            if validation:
                self.validation(epoch)

    def training(self, epoch):
        if self.sw is None and self.is_master:
            self.sw = SummaryWriterAvg(
                log_dir=str(self.cfg.LOGS_PATH),
                flush_secs=10,
                dump_period=self.tb_dump_period,
            )

        if self.cfg.distributed:
            self.train_data.sampler.set_epoch(epoch)

        log_prefix = "Train" + self.task_prefix.capitalize()
        tbar = (
            tqdm(self.train_data, file=self.tqdm_out, ncols=100)
            if self.is_master
            else self.train_data
        )

        for metric in self.train_metrics:
            metric.reset_epoch_stats()

        self.net.train()
        train_loss = 0.0
        for i, batch_data in enumerate(tbar):
            global_step = epoch * len(self.train_data) + i

            loss, losses_logging, splitted_batch_data, outputs = self.batch_forward(
                batch_data
            )

            self.optim.zero_grad()
            loss.backward()
            self.optim.step()

            losses_logging["overall"] = loss
            reduce_loss_dict(losses_logging)

            train_loss += losses_logging["overall"].item()

            if self.is_master:
                for loss_name, loss_value in losses_logging.items():
                    self.sw.add_scalar(
                        tag=f"{log_prefix}Losses/{loss_name}",
                        value=loss_value.item(),
                        global_step=global_step,
                    )

                for k, v in self.loss_cfg.items():
                    if (
                        "_loss" in k
                        and hasattr(v, "log_states")
                        and self.loss_cfg.get(k + "_weight", 0.0) > 0
                    ):
                        v.log_states(self.sw, f"{log_prefix}Losses/{k}", global_step)

                if (
                    self.image_dump_interval > 0
                    and global_step % self.image_dump_interval == 0
                ):
                    self.save_visualization(
                        splitted_batch_data, outputs, global_step, prefix="train"
                    )

                self.sw.add_scalar(
                    tag=f"{log_prefix}States/learning_rate",
                    value=self.lr
                    if not hasattr(self, "lr_scheduler")
                    else self.lr_scheduler.get_lr()[-1],
                    global_step=global_step,
                )

                tbar.set_description(
                    f"Epoch {epoch}, training loss {train_loss/(i+1):.4f}"
                )
                for metric in self.train_metrics:
                    metric.log_states(
                        self.sw, f"{log_prefix}Metrics/{metric.name}", global_step
                    )

        if self.is_master:
            for metric in self.train_metrics:
                self.sw.add_scalar(
                    tag=f"{log_prefix}Metrics/{metric.name}",
                    value=metric.get_epoch_value(),
                    global_step=epoch,
                    disable_avg=True,
                )

            save_checkpoint(
                self.net,
                self.cfg.CHECKPOINTS_PATH,
                prefix=self.task_prefix,
                epoch=None,
                multi_gpu=self.cfg.multi_gpu,
            )

            if isinstance(self.checkpoint_interval, (list, tuple)):
                checkpoint_interval = [
                    x for x in self.checkpoint_interval if x[0] <= epoch
                ][-1][1]
            else:
                checkpoint_interval = self.checkpoint_interval

            if epoch % checkpoint_interval == 0:
                save_checkpoint(
                    self.net,
                    self.cfg.CHECKPOINTS_PATH,
                    prefix=self.task_prefix,
                    epoch=epoch,
                    multi_gpu=self.cfg.multi_gpu,
                )

        if hasattr(self, "lr_scheduler"):
            self.lr_scheduler.step()

    def validation(self, epoch):
        if self.sw is None and self.is_master:
            self.sw = SummaryWriterAvg(
                log_dir=str(self.cfg.LOGS_PATH),
                flush_secs=10,
                dump_period=self.tb_dump_period,
            )

        log_prefix = "Val" + self.task_prefix.capitalize()
        tbar = (
            tqdm(self.val_data, file=self.tqdm_out, ncols=100)
            if self.is_master
            else self.val_data
        )

        for metric in self.val_metrics:
            metric.reset_epoch_stats()

        val_loss = 0
        losses_logging = defaultdict(list)

        self.net.eval()
        for i, batch_data in enumerate(tbar):
            global_step = epoch * len(self.val_data) + i
            (
                loss,
                batch_losses_logging,
                splitted_batch_data,
                outputs,
            ) = self.batch_forward(batch_data, validation=True)

            batch_losses_logging["overall"] = loss
            reduce_loss_dict(batch_losses_logging)
            for loss_name, loss_value in batch_losses_logging.items():
                losses_logging[loss_name].append(loss_value.item())

            val_loss += batch_losses_logging["overall"].item()

            if self.is_master:
                tbar.set_description(
                    f"Epoch {epoch}, validation loss: {val_loss/(i + 1):.4f}"
                )
                for metric in self.val_metrics:
                    metric.log_states(
                        self.sw, f"{log_prefix}Metrics/{metric.name}", global_step
                    )

        if self.is_master:
            for loss_name, loss_values in losses_logging.items():
                self.sw.add_scalar(
                    tag=f"{log_prefix}Losses/{loss_name}",
                    value=np.array(loss_values).mean(),
                    global_step=epoch,
                    disable_avg=True,
                )

            for metric in self.val_metrics:
                self.sw.add_scalar(
                    tag=f"{log_prefix}Metrics/{metric.name}",
                    value=metric.get_epoch_value(),
                    global_step=epoch,
                    disable_avg=True,
                )

    def batch_forward(self, batch_data, validation=False):
        metrics = self.val_metrics if validation else self.train_metrics
        losses_logging = dict()

        with torch.set_grad_enabled(not validation):
            batch_data = {k: v.to(self.device) for k, v in batch_data.items()}
            image, gt_mask, points = (
                batch_data["images"],
                batch_data["instances"],
                batch_data["points"],
            )
            orig_image, orig_gt_mask, orig_points = (
                image.clone(),
                gt_mask.clone(),
                points.clone(),
            )

            prev_output = torch.zeros_like(image, dtype=torch.float32)[:, :1, :, :]

            last_click_indx = None

            with torch.no_grad():
                num_iters = random.randint(0, self.max_num_next_clicks)

                for click_indx in range(num_iters):
                    last_click_indx = click_indx

                    if not validation:
                        self.net.eval()

                    if self.click_models is None or click_indx >= len(
                        self.click_models
                    ):
                        eval_model = self.net
                    else:
                        eval_model = self.click_models[click_indx]

                    net_input = (
                        torch.cat((image, prev_output), dim=1)
                        if self.net.with_prev_mask
                        else image
                    )
                    prev_output = torch.sigmoid(
                        eval_model(net_input, points)["instances"]
                    )

                    points = get_next_points(
                        prev_output, orig_gt_mask, points, click_indx + 1
                    )

                    if not validation:
                        self.net.train()

                if (
                    self.net.with_prev_mask
                    and self.prev_mask_drop_prob > 0
                    and last_click_indx is not None
                ):
                    zero_mask = (
                        np.random.random(size=prev_output.size(0))
                        < self.prev_mask_drop_prob
                    )
                    prev_output[zero_mask] = torch.zeros_like(prev_output[zero_mask])

            batch_data["points"] = points

            net_input = (
                torch.cat((image, prev_output), dim=1)
                if self.net.with_prev_mask
                else image
            )
            output = self.net(net_input, points)

            loss = 0.0
            loss = self.add_loss(
                "instance_loss",
                loss,
                losses_logging,
                validation,
                lambda: (output["instances"], batch_data["instances"]),
            )
            loss = self.add_loss(
                "instance_aux_loss",
                loss,
                losses_logging,
                validation,
                lambda: (output["instances_aux"], batch_data["instances"]),
            )

            if self.is_master:
                with torch.no_grad():
                    for m in metrics:
                        m.update(
                            *(output.get(x) for x in m.pred_outputs),
                            *(batch_data[x] for x in m.gt_outputs),
                        )
        return loss, losses_logging, batch_data, output

    def add_loss(
        self, loss_name, total_loss, losses_logging, validation, lambda_loss_inputs
    ):
        loss_cfg = self.loss_cfg if not validation else self.val_loss_cfg
        loss_weight = loss_cfg.get(loss_name + "_weight", 0.0)
        if loss_weight > 0.0:
            loss_criterion = loss_cfg.get(loss_name)
            loss = loss_criterion(*lambda_loss_inputs())
            loss = torch.mean(loss)
            losses_logging[loss_name] = loss
            loss = loss_weight * loss
            total_loss = total_loss + loss

        return total_loss

    def save_visualization(self, splitted_batch_data, outputs, global_step, prefix):
        output_images_path = self.cfg.VIS_PATH / prefix
        if self.task_prefix:
            output_images_path /= self.task_prefix

        if not output_images_path.exists():
            output_images_path.mkdir(parents=True)
        image_name_prefix = f"{global_step:06d}"

        def _save_image(suffix, image):
            cv2.imwrite(
                str(output_images_path / f"{image_name_prefix}_{suffix}.jpg"),
                image,
                [cv2.IMWRITE_JPEG_QUALITY, 85],
            )

        images = splitted_batch_data["images"]
        points = splitted_batch_data["points"]
        instance_masks = splitted_batch_data["instances"]

        gt_instance_masks = instance_masks.cpu().numpy()
        predicted_instance_masks = (
            torch.sigmoid(outputs["instances"]).detach().cpu().numpy()
        )
        points = points.detach().cpu().numpy()

        image_blob, points = images[0], points[0]
        gt_mask = np.squeeze(gt_instance_masks[0], axis=0)
        predicted_mask = np.squeeze(predicted_instance_masks[0], axis=0)

        image = image_blob.cpu().numpy() * 255
        image = image.transpose((1, 2, 0))

        image_with_points = draw_points(
            image, points[: self.max_interactive_points], (0, 255, 0)
        )
        image_with_points = draw_points(
            image_with_points, points[self.max_interactive_points :], (0, 0, 255)
        )

        gt_mask[gt_mask < 0] = 0.25
        gt_mask = draw_probmap(gt_mask)
        predicted_mask = draw_probmap(predicted_mask)
        viz_image = np.hstack((image_with_points, gt_mask, predicted_mask)).astype(
            np.uint8
        )

        _save_image("instance_segmentation", viz_image[:, :, ::-1])

    def _load_weights(self, net):
        if self.cfg.weights is not None:
            if os.path.isfile(self.cfg.weights):
                load_weights(net, self.cfg.weights)
                self.cfg.weights = None
            else:
                raise RuntimeError(f"=> no checkpoint found at '{self.cfg.weights}'")
        elif self.cfg.resume_exp is not None:
            checkpoints = list(
                self.cfg.CHECKPOINTS_PATH.glob(f"{self.cfg.resume_prefix}*.pth")
            )
            assert len(checkpoints) == 1

            checkpoint_path = checkpoints[0]
            logger.info(f"Load checkpoint from path: {checkpoint_path}")
            load_weights(net, str(checkpoint_path))
        return net

    @property
    def is_master(self):
        return self.cfg.local_rank == 0


def get_next_points(pred, gt, points, click_indx, pred_thresh=0.49):
    assert click_indx > 0
    pred = pred.cpu().numpy()[:, 0, :, :]
    gt = gt.cpu().numpy()[:, 0, :, :] > 0.5

    fn_mask = np.logical_and(gt, pred < pred_thresh)
    fp_mask = np.logical_and(np.logical_not(gt), pred > pred_thresh)

    fn_mask = np.pad(fn_mask, ((0, 0), (1, 1), (1, 1)), "constant").astype(np.uint8)
    fp_mask = np.pad(fp_mask, ((0, 0), (1, 1), (1, 1)), "constant").astype(np.uint8)
    num_points = points.size(1) // 2
    points = points.clone()

    for bindx in range(fn_mask.shape[0]):
        fn_mask_dt = cv2.distanceTransform(fn_mask[bindx], cv2.DIST_L2, 5)[1:-1, 1:-1]
        fp_mask_dt = cv2.distanceTransform(fp_mask[bindx], cv2.DIST_L2, 5)[1:-1, 1:-1]

        fn_max_dist = np.max(fn_mask_dt)
        fp_max_dist = np.max(fp_mask_dt)

        is_positive = fn_max_dist > fp_max_dist
        dt = fn_mask_dt if is_positive else fp_mask_dt
        inner_mask = dt > max(fn_max_dist, fp_max_dist) / 2.0
        indices = np.argwhere(inner_mask)
        if len(indices) > 0:
            coords = indices[np.random.randint(0, len(indices))]
            if is_positive:
                points[bindx, num_points - click_indx, 0] = float(coords[0])
                points[bindx, num_points - click_indx, 1] = float(coords[1])
                points[bindx, num_points - click_indx, 2] = float(click_indx)
            else:
                points[bindx, 2 * num_points - click_indx, 0] = float(coords[0])
                points[bindx, 2 * num_points - click_indx, 1] = float(coords[1])
                points[bindx, 2 * num_points - click_indx, 2] = float(click_indx)

    return points


def load_weights(model, path_to_weights):
    current_state_dict = model.state_dict()
    new_state_dict = torch.load(path_to_weights, map_location="cpu")["state_dict"]
    current_state_dict.update(new_state_dict)
    model.load_state_dict(current_state_dict)