Spaces:
Runtime error
Runtime error
File size: 15,533 Bytes
1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import numpy as np
import torch
import torch.nn.functional as F
from scipy.optimize import fmin_l_bfgs_b
from .base import BasePredictor
class BRSBasePredictor(BasePredictor):
def __init__(self, model, device, opt_functor, optimize_after_n_clicks=1, **kwargs):
super().__init__(model, device, **kwargs)
self.optimize_after_n_clicks = optimize_after_n_clicks
self.opt_functor = opt_functor
self.opt_data = None
self.input_data = None
def set_input_image(self, image):
super().set_input_image(image)
self.opt_data = None
self.input_data = None
def _get_clicks_maps_nd(self, clicks_lists, image_shape, radius=1):
pos_clicks_map = np.zeros(
(len(clicks_lists), 1) + image_shape, dtype=np.float32
)
neg_clicks_map = np.zeros(
(len(clicks_lists), 1) + image_shape, dtype=np.float32
)
for list_indx, clicks_list in enumerate(clicks_lists):
for click in clicks_list:
y, x = click.coords
y, x = int(round(y)), int(round(x))
y1, x1 = y - radius, x - radius
y2, x2 = y + radius + 1, x + radius + 1
if click.is_positive:
pos_clicks_map[list_indx, 0, y1:y2, x1:x2] = True
else:
neg_clicks_map[list_indx, 0, y1:y2, x1:x2] = True
with torch.no_grad():
pos_clicks_map = torch.from_numpy(pos_clicks_map).to(self.device)
neg_clicks_map = torch.from_numpy(neg_clicks_map).to(self.device)
return pos_clicks_map, neg_clicks_map
def get_states(self):
return {
"transform_states": self._get_transform_states(),
"opt_data": self.opt_data,
}
def set_states(self, states):
self._set_transform_states(states["transform_states"])
self.opt_data = states["opt_data"]
class FeatureBRSPredictor(BRSBasePredictor):
def __init__(
self, model, device, opt_functor, insertion_mode="after_deeplab", **kwargs
):
super().__init__(model, device, opt_functor=opt_functor, **kwargs)
self.insertion_mode = insertion_mode
self._c1_features = None
if self.insertion_mode == "after_deeplab":
self.num_channels = model.feature_extractor.ch
elif self.insertion_mode == "after_c4":
self.num_channels = model.feature_extractor.aspp_in_channels
elif self.insertion_mode == "after_aspp":
self.num_channels = model.feature_extractor.ch + 32
else:
raise NotImplementedError
def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
points_nd = self.get_points_nd(clicks_lists)
pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
num_clicks = len(clicks_lists[0])
bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
if (
self.opt_data is None
or self.opt_data.shape[0] // (2 * self.num_channels) != bs
):
self.opt_data = np.zeros((bs * 2 * self.num_channels), dtype=np.float32)
if (
num_clicks <= self.net_clicks_limit
or is_image_changed
or self.input_data is None
):
self.input_data = self._get_head_input(image_nd, points_nd)
def get_prediction_logits(scale, bias):
scale = scale.view(bs, -1, 1, 1)
bias = bias.view(bs, -1, 1, 1)
if self.with_flip:
scale = scale.repeat(2, 1, 1, 1)
bias = bias.repeat(2, 1, 1, 1)
scaled_backbone_features = self.input_data * scale
scaled_backbone_features = scaled_backbone_features + bias
if self.insertion_mode == "after_c4":
x = self.net.feature_extractor.aspp(scaled_backbone_features)
x = F.interpolate(
x,
mode="bilinear",
size=self._c1_features.size()[2:],
align_corners=True,
)
x = torch.cat((x, self._c1_features), dim=1)
scaled_backbone_features = self.net.feature_extractor.head(x)
elif self.insertion_mode == "after_aspp":
scaled_backbone_features = self.net.feature_extractor.head(
scaled_backbone_features
)
pred_logits = self.net.head(scaled_backbone_features)
pred_logits = F.interpolate(
pred_logits,
size=image_nd.size()[2:],
mode="bilinear",
align_corners=True,
)
return pred_logits
self.opt_functor.init_click(
get_prediction_logits, pos_mask, neg_mask, self.device
)
if num_clicks > self.optimize_after_n_clicks:
opt_result = fmin_l_bfgs_b(
func=self.opt_functor,
x0=self.opt_data,
**self.opt_functor.optimizer_params
)
self.opt_data = opt_result[0]
with torch.no_grad():
if self.opt_functor.best_prediction is not None:
opt_pred_logits = self.opt_functor.best_prediction
else:
opt_data_nd = torch.from_numpy(self.opt_data).to(self.device)
opt_vars, _ = self.opt_functor.unpack_opt_params(opt_data_nd)
opt_pred_logits = get_prediction_logits(*opt_vars)
return opt_pred_logits
def _get_head_input(self, image_nd, points):
with torch.no_grad():
image_nd, prev_mask = self.net.prepare_input(image_nd)
coord_features = self.net.get_coord_features(image_nd, prev_mask, points)
if self.net.rgb_conv is not None:
x = self.net.rgb_conv(torch.cat((image_nd, coord_features), dim=1))
additional_features = None
elif hasattr(self.net, "maps_transform"):
x = image_nd
additional_features = self.net.maps_transform(coord_features)
if self.insertion_mode == "after_c4" or self.insertion_mode == "after_aspp":
c1, _, c3, c4 = self.net.feature_extractor.backbone(
x, additional_features
)
c1 = self.net.feature_extractor.skip_project(c1)
if self.insertion_mode == "after_aspp":
x = self.net.feature_extractor.aspp(c4)
x = F.interpolate(
x, size=c1.size()[2:], mode="bilinear", align_corners=True
)
x = torch.cat((x, c1), dim=1)
backbone_features = x
else:
backbone_features = c4
self._c1_features = c1
else:
backbone_features = self.net.feature_extractor(x, additional_features)[
0
]
return backbone_features
class HRNetFeatureBRSPredictor(BRSBasePredictor):
def __init__(self, model, device, opt_functor, insertion_mode="A", **kwargs):
super().__init__(model, device, opt_functor=opt_functor, **kwargs)
self.insertion_mode = insertion_mode
self._c1_features = None
if self.insertion_mode == "A":
self.num_channels = sum(
k * model.feature_extractor.width for k in [1, 2, 4, 8]
)
elif self.insertion_mode == "C":
self.num_channels = 2 * model.feature_extractor.ocr_width
else:
raise NotImplementedError
def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
points_nd = self.get_points_nd(clicks_lists)
pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
num_clicks = len(clicks_lists[0])
bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
if (
self.opt_data is None
or self.opt_data.shape[0] // (2 * self.num_channels) != bs
):
self.opt_data = np.zeros((bs * 2 * self.num_channels), dtype=np.float32)
if (
num_clicks <= self.net_clicks_limit
or is_image_changed
or self.input_data is None
):
self.input_data = self._get_head_input(image_nd, points_nd)
def get_prediction_logits(scale, bias):
scale = scale.view(bs, -1, 1, 1)
bias = bias.view(bs, -1, 1, 1)
if self.with_flip:
scale = scale.repeat(2, 1, 1, 1)
bias = bias.repeat(2, 1, 1, 1)
scaled_backbone_features = self.input_data * scale
scaled_backbone_features = scaled_backbone_features + bias
if self.insertion_mode == "A":
if self.net.feature_extractor.ocr_width > 0:
out_aux = self.net.feature_extractor.aux_head(
scaled_backbone_features
)
feats = self.net.feature_extractor.conv3x3_ocr(
scaled_backbone_features
)
context = self.net.feature_extractor.ocr_gather_head(feats, out_aux)
feats = self.net.feature_extractor.ocr_distri_head(feats, context)
else:
feats = scaled_backbone_features
pred_logits = self.net.feature_extractor.cls_head(feats)
elif self.insertion_mode == "C":
pred_logits = self.net.feature_extractor.cls_head(
scaled_backbone_features
)
else:
raise NotImplementedError
pred_logits = F.interpolate(
pred_logits,
size=image_nd.size()[2:],
mode="bilinear",
align_corners=True,
)
return pred_logits
self.opt_functor.init_click(
get_prediction_logits, pos_mask, neg_mask, self.device
)
if num_clicks > self.optimize_after_n_clicks:
opt_result = fmin_l_bfgs_b(
func=self.opt_functor,
x0=self.opt_data,
**self.opt_functor.optimizer_params
)
self.opt_data = opt_result[0]
with torch.no_grad():
if self.opt_functor.best_prediction is not None:
opt_pred_logits = self.opt_functor.best_prediction
else:
opt_data_nd = torch.from_numpy(self.opt_data).to(self.device)
opt_vars, _ = self.opt_functor.unpack_opt_params(opt_data_nd)
opt_pred_logits = get_prediction_logits(*opt_vars)
return opt_pred_logits
def _get_head_input(self, image_nd, points):
with torch.no_grad():
image_nd, prev_mask = self.net.prepare_input(image_nd)
coord_features = self.net.get_coord_features(image_nd, prev_mask, points)
if self.net.rgb_conv is not None:
x = self.net.rgb_conv(torch.cat((image_nd, coord_features), dim=1))
additional_features = None
elif hasattr(self.net, "maps_transform"):
x = image_nd
additional_features = self.net.maps_transform(coord_features)
feats = self.net.feature_extractor.compute_hrnet_feats(
x, additional_features
)
if self.insertion_mode == "A":
backbone_features = feats
elif self.insertion_mode == "C":
out_aux = self.net.feature_extractor.aux_head(feats)
feats = self.net.feature_extractor.conv3x3_ocr(feats)
context = self.net.feature_extractor.ocr_gather_head(feats, out_aux)
backbone_features = self.net.feature_extractor.ocr_distri_head(
feats, context
)
else:
raise NotImplementedError
return backbone_features
class InputBRSPredictor(BRSBasePredictor):
def __init__(self, model, device, opt_functor, optimize_target="rgb", **kwargs):
super().__init__(model, device, opt_functor=opt_functor, **kwargs)
self.optimize_target = optimize_target
def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
points_nd = self.get_points_nd(clicks_lists)
pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
num_clicks = len(clicks_lists[0])
if self.opt_data is None or is_image_changed:
if self.optimize_target == "dmaps":
opt_channels = (
self.net.coord_feature_ch - 1
if self.net.with_prev_mask
else self.net.coord_feature_ch
)
else:
opt_channels = 3
bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
self.opt_data = torch.zeros(
(bs, opt_channels, image_nd.shape[2], image_nd.shape[3]),
device=self.device,
dtype=torch.float32,
)
def get_prediction_logits(opt_bias):
input_image, prev_mask = self.net.prepare_input(image_nd)
dmaps = self.net.get_coord_features(input_image, prev_mask, points_nd)
if self.optimize_target == "rgb":
input_image = input_image + opt_bias
elif self.optimize_target == "dmaps":
if self.net.with_prev_mask:
dmaps[:, 1:, :, :] = dmaps[:, 1:, :, :] + opt_bias
else:
dmaps = dmaps + opt_bias
if self.net.rgb_conv is not None:
x = self.net.rgb_conv(torch.cat((input_image, dmaps), dim=1))
if self.optimize_target == "all":
x = x + opt_bias
coord_features = None
elif hasattr(self.net, "maps_transform"):
x = input_image
coord_features = self.net.maps_transform(dmaps)
pred_logits = self.net.backbone_forward(x, coord_features=coord_features)[
"instances"
]
pred_logits = F.interpolate(
pred_logits,
size=image_nd.size()[2:],
mode="bilinear",
align_corners=True,
)
return pred_logits
self.opt_functor.init_click(
get_prediction_logits,
pos_mask,
neg_mask,
self.device,
shape=self.opt_data.shape,
)
if num_clicks > self.optimize_after_n_clicks:
opt_result = fmin_l_bfgs_b(
func=self.opt_functor,
x0=self.opt_data.cpu().numpy().ravel(),
**self.opt_functor.optimizer_params
)
self.opt_data = (
torch.from_numpy(opt_result[0])
.view(self.opt_data.shape)
.to(self.device)
)
with torch.no_grad():
if self.opt_functor.best_prediction is not None:
opt_pred_logits = self.opt_functor.best_prediction
else:
opt_vars, _ = self.opt_functor.unpack_opt_params(self.opt_data)
opt_pred_logits = get_prediction_logits(*opt_vars)
return opt_pred_logits
|