File size: 6,961 Bytes
1615d09
 
2cdd41c
 
 
1615d09
 
 
2cdd41c
 
 
 
1615d09
 
 
 
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
1615d09
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
 
 
 
 
 
2cdd41c
 
1615d09
 
 
 
2cdd41c
 
 
 
 
 
 
 
1615d09
 
 
 
 
2cdd41c
 
 
 
1615d09
 
 
 
 
 
 
 
 
2cdd41c
 
 
 
 
 
1615d09
 
 
 
 
 
 
2cdd41c
 
1615d09
 
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615d09
 
 
 
 
 
 
2cdd41c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from typing import List

import torch

from isegm.inference.clicker import Click
from isegm.utils.misc import (clamp_bbox, expand_bbox, get_bbox_from_mask,
                              get_bbox_iou)

from .base import BaseTransform


class ZoomIn(BaseTransform):
    def __init__(
        self,
        target_size=400,
        skip_clicks=1,
        expansion_ratio=1.4,
        min_crop_size=200,
        recompute_thresh_iou=0.5,
        prob_thresh=0.50,
    ):
        super().__init__()
        self.target_size = target_size
        self.min_crop_size = min_crop_size
        self.skip_clicks = skip_clicks
        self.expansion_ratio = expansion_ratio
        self.recompute_thresh_iou = recompute_thresh_iou
        self.prob_thresh = prob_thresh

        self._input_image_shape = None
        self._prev_probs = None
        self._object_roi = None
        self._roi_image = None

    def transform(self, image_nd, clicks_lists: List[List[Click]]):
        assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
        self.image_changed = False

        clicks_list = clicks_lists[0]
        if len(clicks_list) <= self.skip_clicks:
            return image_nd, clicks_lists

        self._input_image_shape = image_nd.shape

        current_object_roi = None
        if self._prev_probs is not None:
            current_pred_mask = (self._prev_probs > self.prob_thresh)[0, 0]
            if current_pred_mask.sum() > 0:
                current_object_roi = get_object_roi(
                    current_pred_mask,
                    clicks_list,
                    self.expansion_ratio,
                    self.min_crop_size,
                )

        if current_object_roi is None:
            if self.skip_clicks >= 0:
                return image_nd, clicks_lists
            else:
                current_object_roi = 0, image_nd.shape[2] - 1, 0, image_nd.shape[3] - 1

        update_object_roi = False
        if self._object_roi is None:
            update_object_roi = True
        elif not check_object_roi(self._object_roi, clicks_list):
            update_object_roi = True
        elif (
            get_bbox_iou(current_object_roi, self._object_roi)
            < self.recompute_thresh_iou
        ):
            update_object_roi = True

        if update_object_roi:
            self._object_roi = current_object_roi
            self.image_changed = True
        self._roi_image = get_roi_image_nd(image_nd, self._object_roi, self.target_size)

        tclicks_lists = [self._transform_clicks(clicks_list)]
        return self._roi_image.to(image_nd.device), tclicks_lists

    def inv_transform(self, prob_map):
        if self._object_roi is None:
            self._prev_probs = prob_map.cpu().numpy()
            return prob_map

        assert prob_map.shape[0] == 1
        rmin, rmax, cmin, cmax = self._object_roi
        prob_map = torch.nn.functional.interpolate(
            prob_map,
            size=(rmax - rmin + 1, cmax - cmin + 1),
            mode="bilinear",
            align_corners=True,
        )

        if self._prev_probs is not None:
            new_prob_map = torch.zeros(
                *self._prev_probs.shape, device=prob_map.device, dtype=prob_map.dtype
            )
            new_prob_map[:, :, rmin : rmax + 1, cmin : cmax + 1] = prob_map
        else:
            new_prob_map = prob_map

        self._prev_probs = new_prob_map.cpu().numpy()

        return new_prob_map

    def check_possible_recalculation(self):
        if (
            self._prev_probs is None
            or self._object_roi is not None
            or self.skip_clicks > 0
        ):
            return False

        pred_mask = (self._prev_probs > self.prob_thresh)[0, 0]
        if pred_mask.sum() > 0:
            possible_object_roi = get_object_roi(
                pred_mask, [], self.expansion_ratio, self.min_crop_size
            )
            image_roi = (
                0,
                self._input_image_shape[2] - 1,
                0,
                self._input_image_shape[3] - 1,
            )
            if get_bbox_iou(possible_object_roi, image_roi) < 0.50:
                return True
        return False

    def get_state(self):
        roi_image = self._roi_image.cpu() if self._roi_image is not None else None
        return (
            self._input_image_shape,
            self._object_roi,
            self._prev_probs,
            roi_image,
            self.image_changed,
        )

    def set_state(self, state):
        (
            self._input_image_shape,
            self._object_roi,
            self._prev_probs,
            self._roi_image,
            self.image_changed,
        ) = state

    def reset(self):
        self._input_image_shape = None
        self._object_roi = None
        self._prev_probs = None
        self._roi_image = None
        self.image_changed = False

    def _transform_clicks(self, clicks_list):
        if self._object_roi is None:
            return clicks_list

        rmin, rmax, cmin, cmax = self._object_roi
        crop_height, crop_width = self._roi_image.shape[2:]

        transformed_clicks = []
        for click in clicks_list:
            new_r = crop_height * (click.coords[0] - rmin) / (rmax - rmin + 1)
            new_c = crop_width * (click.coords[1] - cmin) / (cmax - cmin + 1)
            transformed_clicks.append(click.copy(coords=(new_r, new_c)))
        return transformed_clicks


def get_object_roi(pred_mask, clicks_list, expansion_ratio, min_crop_size):
    pred_mask = pred_mask.copy()

    for click in clicks_list:
        if click.is_positive:
            pred_mask[int(click.coords[0]), int(click.coords[1])] = 1

    bbox = get_bbox_from_mask(pred_mask)
    bbox = expand_bbox(bbox, expansion_ratio, min_crop_size)
    h, w = pred_mask.shape[0], pred_mask.shape[1]
    bbox = clamp_bbox(bbox, 0, h - 1, 0, w - 1)

    return bbox


def get_roi_image_nd(image_nd, object_roi, target_size):
    rmin, rmax, cmin, cmax = object_roi

    height = rmax - rmin + 1
    width = cmax - cmin + 1

    if isinstance(target_size, tuple):
        new_height, new_width = target_size
    else:
        scale = target_size / max(height, width)
        new_height = int(round(height * scale))
        new_width = int(round(width * scale))

    with torch.no_grad():
        roi_image_nd = image_nd[:, :, rmin : rmax + 1, cmin : cmax + 1]
        roi_image_nd = torch.nn.functional.interpolate(
            roi_image_nd,
            size=(new_height, new_width),
            mode="bilinear",
            align_corners=True,
        )

    return roi_image_nd


def check_object_roi(object_roi, clicks_list):
    for click in clicks_list:
        if click.is_positive:
            if click.coords[0] < object_roi[0] or click.coords[0] >= object_roi[1]:
                return False
            if click.coords[1] < object_roi[2] or click.coords[1] >= object_roi[3]:
                return False

    return True