Spaces:
Runtime error
Runtime error
File size: 7,217 Bytes
2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from isegm.utils import misc
class NormalizedFocalLossSigmoid(nn.Module):
def __init__(
self,
axis=-1,
alpha=0.25,
gamma=2,
max_mult=-1,
eps=1e-12,
from_sigmoid=False,
detach_delimeter=True,
batch_axis=0,
weight=None,
size_average=True,
ignore_label=-1,
):
super(NormalizedFocalLossSigmoid, self).__init__()
self._axis = axis
self._alpha = alpha
self._gamma = gamma
self._ignore_label = ignore_label
self._weight = weight if weight is not None else 1.0
self._batch_axis = batch_axis
self._from_logits = from_sigmoid
self._eps = eps
self._size_average = size_average
self._detach_delimeter = detach_delimeter
self._max_mult = max_mult
self._k_sum = 0
self._m_max = 0
def forward(self, pred, label):
one_hot = label > 0.5
sample_weight = label != self._ignore_label
if not self._from_logits:
pred = torch.sigmoid(pred)
alpha = torch.where(
one_hot, self._alpha * sample_weight, (1 - self._alpha) * sample_weight
)
pt = torch.where(
sample_weight, 1.0 - torch.abs(label - pred), torch.ones_like(pred)
)
beta = (1 - pt) ** self._gamma
sw_sum = torch.sum(sample_weight, dim=(-2, -1), keepdim=True)
beta_sum = torch.sum(beta, dim=(-2, -1), keepdim=True)
mult = sw_sum / (beta_sum + self._eps)
if self._detach_delimeter:
mult = mult.detach()
beta = beta * mult
if self._max_mult > 0:
beta = torch.clamp_max(beta, self._max_mult)
with torch.no_grad():
ignore_area = (
torch.sum(label == self._ignore_label, dim=tuple(range(1, label.dim())))
.cpu()
.numpy()
)
sample_mult = (
torch.mean(mult, dim=tuple(range(1, mult.dim()))).cpu().numpy()
)
if np.any(ignore_area == 0):
self._k_sum = (
0.9 * self._k_sum + 0.1 * sample_mult[ignore_area == 0].mean()
)
beta_pmax, _ = torch.flatten(beta, start_dim=1).max(dim=1)
beta_pmax = beta_pmax.mean().item()
self._m_max = 0.8 * self._m_max + 0.2 * beta_pmax
loss = (
-alpha
* beta
* torch.log(
torch.min(
pt + self._eps, torch.ones(1, dtype=torch.float).to(pt.device)
)
)
)
loss = self._weight * (loss * sample_weight)
if self._size_average:
bsum = torch.sum(
sample_weight,
dim=misc.get_dims_with_exclusion(sample_weight.dim(), self._batch_axis),
)
loss = torch.sum(
loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)
) / (bsum + self._eps)
else:
loss = torch.sum(
loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)
)
return loss
def log_states(self, sw, name, global_step):
sw.add_scalar(tag=name + "_k", value=self._k_sum, global_step=global_step)
sw.add_scalar(tag=name + "_m", value=self._m_max, global_step=global_step)
class FocalLoss(nn.Module):
def __init__(
self,
axis=-1,
alpha=0.25,
gamma=2,
from_logits=False,
batch_axis=0,
weight=None,
num_class=None,
eps=1e-9,
size_average=True,
scale=1.0,
ignore_label=-1,
):
super(FocalLoss, self).__init__()
self._axis = axis
self._alpha = alpha
self._gamma = gamma
self._ignore_label = ignore_label
self._weight = weight if weight is not None else 1.0
self._batch_axis = batch_axis
self._scale = scale
self._num_class = num_class
self._from_logits = from_logits
self._eps = eps
self._size_average = size_average
def forward(self, pred, label, sample_weight=None):
one_hot = label > 0.5
sample_weight = label != self._ignore_label
if not self._from_logits:
pred = torch.sigmoid(pred)
alpha = torch.where(
one_hot, self._alpha * sample_weight, (1 - self._alpha) * sample_weight
)
pt = torch.where(
sample_weight, 1.0 - torch.abs(label - pred), torch.ones_like(pred)
)
beta = (1 - pt) ** self._gamma
loss = (
-alpha
* beta
* torch.log(
torch.min(
pt + self._eps, torch.ones(1, dtype=torch.float).to(pt.device)
)
)
)
loss = self._weight * (loss * sample_weight)
if self._size_average:
tsum = torch.sum(
sample_weight,
dim=misc.get_dims_with_exclusion(label.dim(), self._batch_axis),
)
loss = torch.sum(
loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)
) / (tsum + self._eps)
else:
loss = torch.sum(
loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)
)
return self._scale * loss
class SoftIoU(nn.Module):
def __init__(self, from_sigmoid=False, ignore_label=-1):
super().__init__()
self._from_sigmoid = from_sigmoid
self._ignore_label = ignore_label
def forward(self, pred, label):
label = label.view(pred.size())
sample_weight = label != self._ignore_label
if not self._from_sigmoid:
pred = torch.sigmoid(pred)
loss = 1.0 - torch.sum(pred * label * sample_weight, dim=(1, 2, 3)) / (
torch.sum(torch.max(pred, label) * sample_weight, dim=(1, 2, 3)) + 1e-8
)
return loss
class SigmoidBinaryCrossEntropyLoss(nn.Module):
def __init__(self, from_sigmoid=False, weight=None, batch_axis=0, ignore_label=-1):
super(SigmoidBinaryCrossEntropyLoss, self).__init__()
self._from_sigmoid = from_sigmoid
self._ignore_label = ignore_label
self._weight = weight if weight is not None else 1.0
self._batch_axis = batch_axis
def forward(self, pred, label):
label = label.view(pred.size())
sample_weight = label != self._ignore_label
label = torch.where(sample_weight, label, torch.zeros_like(label))
if not self._from_sigmoid:
loss = torch.relu(pred) - pred * label + F.softplus(-torch.abs(pred))
else:
eps = 1e-12
loss = -(
torch.log(pred + eps) * label
+ torch.log(1.0 - pred + eps) * (1.0 - label)
)
loss = self._weight * (loss * sample_weight)
return torch.mean(
loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)
)
|