Spaces:
Runtime error
Runtime error
File size: 6,190 Bytes
2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c 1615d09 2cdd41c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
import torch._utils
import torch.nn as nn
import torch.nn.functional as F
class SpatialGather_Module(nn.Module):
"""
Aggregate the context features according to the initial
predicted probability distribution.
Employ the soft-weighted method to aggregate the context.
"""
def __init__(self, cls_num=0, scale=1):
super(SpatialGather_Module, self).__init__()
self.cls_num = cls_num
self.scale = scale
def forward(self, feats, probs):
batch_size, c, h, w = probs.size(0), probs.size(1), probs.size(2), probs.size(3)
probs = probs.view(batch_size, c, -1)
feats = feats.view(batch_size, feats.size(1), -1)
feats = feats.permute(0, 2, 1) # batch x hw x c
probs = F.softmax(self.scale * probs, dim=2) # batch x k x hw
ocr_context = (
torch.matmul(probs, feats).permute(0, 2, 1).unsqueeze(3)
) # batch x k x c
return ocr_context
class SpatialOCR_Module(nn.Module):
"""
Implementation of the OCR module:
We aggregate the global object representation to update the representation for each pixel.
"""
def __init__(
self,
in_channels,
key_channels,
out_channels,
scale=1,
dropout=0.1,
norm_layer=nn.BatchNorm2d,
align_corners=True,
):
super(SpatialOCR_Module, self).__init__()
self.object_context_block = ObjectAttentionBlock2D(
in_channels, key_channels, scale, norm_layer, align_corners
)
_in_channels = 2 * in_channels
self.conv_bn_dropout = nn.Sequential(
nn.Conv2d(_in_channels, out_channels, kernel_size=1, padding=0, bias=False),
nn.Sequential(norm_layer(out_channels), nn.ReLU(inplace=True)),
nn.Dropout2d(dropout),
)
def forward(self, feats, proxy_feats):
context = self.object_context_block(feats, proxy_feats)
output = self.conv_bn_dropout(torch.cat([context, feats], 1))
return output
class ObjectAttentionBlock2D(nn.Module):
"""
The basic implementation for object context block
Input:
N X C X H X W
Parameters:
in_channels : the dimension of the input feature map
key_channels : the dimension after the key/query transform
scale : choose the scale to downsample the input feature maps (save memory cost)
bn_type : specify the bn type
Return:
N X C X H X W
"""
def __init__(
self,
in_channels,
key_channels,
scale=1,
norm_layer=nn.BatchNorm2d,
align_corners=True,
):
super(ObjectAttentionBlock2D, self).__init__()
self.scale = scale
self.in_channels = in_channels
self.key_channels = key_channels
self.align_corners = align_corners
self.pool = nn.MaxPool2d(kernel_size=(scale, scale))
self.f_pixel = nn.Sequential(
nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.key_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)),
nn.Conv2d(
in_channels=self.key_channels,
out_channels=self.key_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)),
)
self.f_object = nn.Sequential(
nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.key_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)),
nn.Conv2d(
in_channels=self.key_channels,
out_channels=self.key_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)),
)
self.f_down = nn.Sequential(
nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.key_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)),
)
self.f_up = nn.Sequential(
nn.Conv2d(
in_channels=self.key_channels,
out_channels=self.in_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.Sequential(norm_layer(self.in_channels), nn.ReLU(inplace=True)),
)
def forward(self, x, proxy):
batch_size, h, w = x.size(0), x.size(2), x.size(3)
if self.scale > 1:
x = self.pool(x)
query = self.f_pixel(x).view(batch_size, self.key_channels, -1)
query = query.permute(0, 2, 1)
key = self.f_object(proxy).view(batch_size, self.key_channels, -1)
value = self.f_down(proxy).view(batch_size, self.key_channels, -1)
value = value.permute(0, 2, 1)
sim_map = torch.matmul(query, key)
sim_map = (self.key_channels**-0.5) * sim_map
sim_map = F.softmax(sim_map, dim=-1)
# add bg context ...
context = torch.matmul(sim_map, value)
context = context.permute(0, 2, 1).contiguous()
context = context.view(batch_size, self.key_channels, *x.size()[2:])
context = self.f_up(context)
if self.scale > 1:
context = F.interpolate(
input=context,
size=(h, w),
mode="bilinear",
align_corners=self.align_corners,
)
return context
|