Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
class Initializer(object): | |
def __init__(self, local_init=True, gamma=None): | |
self.local_init = local_init | |
self.gamma = gamma | |
def __call__(self, m): | |
if getattr(m, "__initialized", False): | |
return | |
if ( | |
isinstance( | |
m, | |
( | |
nn.BatchNorm1d, | |
nn.BatchNorm2d, | |
nn.BatchNorm3d, | |
nn.InstanceNorm1d, | |
nn.InstanceNorm2d, | |
nn.InstanceNorm3d, | |
nn.GroupNorm, | |
nn.SyncBatchNorm, | |
), | |
) | |
or "BatchNorm" in m.__class__.__name__ | |
): | |
if m.weight is not None: | |
self._init_gamma(m.weight.data) | |
if m.bias is not None: | |
self._init_beta(m.bias.data) | |
else: | |
if getattr(m, "weight", None) is not None: | |
self._init_weight(m.weight.data) | |
if getattr(m, "bias", None) is not None: | |
self._init_bias(m.bias.data) | |
if self.local_init: | |
object.__setattr__(m, "__initialized", True) | |
def _init_weight(self, data): | |
nn.init.uniform_(data, -0.07, 0.07) | |
def _init_bias(self, data): | |
nn.init.constant_(data, 0) | |
def _init_gamma(self, data): | |
if self.gamma is None: | |
nn.init.constant_(data, 1.0) | |
else: | |
nn.init.normal_(data, 1.0, self.gamma) | |
def _init_beta(self, data): | |
nn.init.constant_(data, 0) | |
class Bilinear(Initializer): | |
def __init__(self, scale, groups, in_channels, **kwargs): | |
super().__init__(**kwargs) | |
self.scale = scale | |
self.groups = groups | |
self.in_channels = in_channels | |
def _init_weight(self, data): | |
"""Reset the weight and bias.""" | |
bilinear_kernel = self.get_bilinear_kernel(self.scale) | |
weight = torch.zeros_like(data) | |
for i in range(self.in_channels): | |
if self.groups == 1: | |
j = i | |
else: | |
j = 0 | |
weight[i, j] = bilinear_kernel | |
data[:] = weight | |
def get_bilinear_kernel(scale): | |
"""Generate a bilinear upsampling kernel.""" | |
kernel_size = 2 * scale - scale % 2 | |
scale = (kernel_size + 1) // 2 | |
center = scale - 0.5 * (1 + kernel_size % 2) | |
og = np.ogrid[:kernel_size, :kernel_size] | |
kernel = (1 - np.abs(og[0] - center) / scale) * ( | |
1 - np.abs(og[1] - center) / scale | |
) | |
return torch.tensor(kernel, dtype=torch.float32) | |
class XavierGluon(Initializer): | |
def __init__(self, rnd_type="uniform", factor_type="avg", magnitude=3, **kwargs): | |
super().__init__(**kwargs) | |
self.rnd_type = rnd_type | |
self.factor_type = factor_type | |
self.magnitude = float(magnitude) | |
def _init_weight(self, arr): | |
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(arr) | |
if self.factor_type == "avg": | |
factor = (fan_in + fan_out) / 2.0 | |
elif self.factor_type == "in": | |
factor = fan_in | |
elif self.factor_type == "out": | |
factor = fan_out | |
else: | |
raise ValueError("Incorrect factor type") | |
scale = np.sqrt(self.magnitude / factor) | |
if self.rnd_type == "uniform": | |
nn.init.uniform_(arr, -scale, scale) | |
elif self.rnd_type == "gaussian": | |
nn.init.normal_(arr, 0, scale) | |
else: | |
raise ValueError("Unknown random type") | |