Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
from isegm.model.modifiers import LRMult | |
from isegm.utils.serialization import serialize | |
from .is_model import ISModel | |
from .modeling.basic_blocks import SepConvHead | |
from .modeling.deeplab_v3 import DeepLabV3Plus | |
class DeeplabModel(ISModel): | |
def __init__( | |
self, | |
backbone="resnet50", | |
deeplab_ch=256, | |
aspp_dropout=0.5, | |
backbone_norm_layer=None, | |
backbone_lr_mult=0.1, | |
norm_layer=nn.BatchNorm2d, | |
**kwargs | |
): | |
super().__init__(norm_layer=norm_layer, **kwargs) | |
self.feature_extractor = DeepLabV3Plus( | |
backbone=backbone, | |
ch=deeplab_ch, | |
project_dropout=aspp_dropout, | |
norm_layer=norm_layer, | |
backbone_norm_layer=backbone_norm_layer, | |
) | |
self.feature_extractor.backbone.apply(LRMult(backbone_lr_mult)) | |
self.head = SepConvHead( | |
1, | |
in_channels=deeplab_ch, | |
mid_channels=deeplab_ch // 2, | |
num_layers=2, | |
norm_layer=norm_layer, | |
) | |
def backbone_forward(self, image, coord_features=None): | |
backbone_features = self.feature_extractor(image, coord_features) | |
return {"instances": self.head(backbone_features[0])} | |