interactive-segmentation / isegm /model /is_deeplab_model.py
curt-park's picture
Refactor code
1615d09
import torch.nn as nn
from isegm.model.modifiers import LRMult
from isegm.utils.serialization import serialize
from .is_model import ISModel
from .modeling.basic_blocks import SepConvHead
from .modeling.deeplab_v3 import DeepLabV3Plus
class DeeplabModel(ISModel):
@serialize
def __init__(
self,
backbone="resnet50",
deeplab_ch=256,
aspp_dropout=0.5,
backbone_norm_layer=None,
backbone_lr_mult=0.1,
norm_layer=nn.BatchNorm2d,
**kwargs
):
super().__init__(norm_layer=norm_layer, **kwargs)
self.feature_extractor = DeepLabV3Plus(
backbone=backbone,
ch=deeplab_ch,
project_dropout=aspp_dropout,
norm_layer=norm_layer,
backbone_norm_layer=backbone_norm_layer,
)
self.feature_extractor.backbone.apply(LRMult(backbone_lr_mult))
self.head = SepConvHead(
1,
in_channels=deeplab_ch,
mid_channels=deeplab_ch // 2,
num_layers=2,
norm_layer=norm_layer,
)
def backbone_forward(self, image, coord_features=None):
backbone_features = self.feature_extractor(image, coord_features)
return {"instances": self.head(backbone_features[0])}