Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
from isegm.model.modifiers import LRMult | |
from isegm.model.ops import BatchImageNormalize, DistMaps, ScaleLayer | |
class ISModel(nn.Module): | |
def __init__( | |
self, | |
use_rgb_conv=True, | |
with_aux_output=False, | |
norm_radius=260, | |
use_disks=False, | |
cpu_dist_maps=False, | |
clicks_groups=None, | |
with_prev_mask=False, | |
use_leaky_relu=False, | |
binary_prev_mask=False, | |
conv_extend=False, | |
norm_layer=nn.BatchNorm2d, | |
norm_mean_std=([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
): | |
super().__init__() | |
self.with_aux_output = with_aux_output | |
self.clicks_groups = clicks_groups | |
self.with_prev_mask = with_prev_mask | |
self.binary_prev_mask = binary_prev_mask | |
self.normalization = BatchImageNormalize(norm_mean_std[0], norm_mean_std[1]) | |
self.coord_feature_ch = 2 | |
if clicks_groups is not None: | |
self.coord_feature_ch *= len(clicks_groups) | |
if self.with_prev_mask: | |
self.coord_feature_ch += 1 | |
if use_rgb_conv: | |
rgb_conv_layers = [ | |
nn.Conv2d( | |
in_channels=3 + self.coord_feature_ch, | |
out_channels=6 + self.coord_feature_ch, | |
kernel_size=1, | |
), | |
norm_layer(6 + self.coord_feature_ch), | |
nn.LeakyReLU(negative_slope=0.2) | |
if use_leaky_relu | |
else nn.ReLU(inplace=True), | |
nn.Conv2d( | |
in_channels=6 + self.coord_feature_ch, out_channels=3, kernel_size=1 | |
), | |
] | |
self.rgb_conv = nn.Sequential(*rgb_conv_layers) | |
elif conv_extend: | |
self.rgb_conv = None | |
self.maps_transform = nn.Conv2d( | |
in_channels=self.coord_feature_ch, | |
out_channels=64, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
) | |
self.maps_transform.apply(LRMult(0.1)) | |
else: | |
self.rgb_conv = None | |
mt_layers = [ | |
nn.Conv2d( | |
in_channels=self.coord_feature_ch, out_channels=16, kernel_size=1 | |
), | |
nn.LeakyReLU(negative_slope=0.2) | |
if use_leaky_relu | |
else nn.ReLU(inplace=True), | |
nn.Conv2d( | |
in_channels=16, out_channels=64, kernel_size=3, stride=2, padding=1 | |
), | |
ScaleLayer(init_value=0.05, lr_mult=1), | |
] | |
self.maps_transform = nn.Sequential(*mt_layers) | |
if self.clicks_groups is not None: | |
self.dist_maps = nn.ModuleList() | |
for click_radius in self.clicks_groups: | |
self.dist_maps.append( | |
DistMaps( | |
norm_radius=click_radius, | |
spatial_scale=1.0, | |
cpu_mode=cpu_dist_maps, | |
use_disks=use_disks, | |
) | |
) | |
else: | |
self.dist_maps = DistMaps( | |
norm_radius=norm_radius, | |
spatial_scale=1.0, | |
cpu_mode=cpu_dist_maps, | |
use_disks=use_disks, | |
) | |
def forward(self, image, points): | |
image, prev_mask = self.prepare_input(image) | |
coord_features = self.get_coord_features(image, prev_mask, points) | |
if self.rgb_conv is not None: | |
x = self.rgb_conv(torch.cat((image, coord_features), dim=1)) | |
outputs = self.backbone_forward(x) | |
else: | |
coord_features = self.maps_transform(coord_features) | |
outputs = self.backbone_forward(image, coord_features) | |
outputs["instances"] = nn.functional.interpolate( | |
outputs["instances"], | |
size=image.size()[2:], | |
mode="bilinear", | |
align_corners=True, | |
) | |
if self.with_aux_output: | |
outputs["instances_aux"] = nn.functional.interpolate( | |
outputs["instances_aux"], | |
size=image.size()[2:], | |
mode="bilinear", | |
align_corners=True, | |
) | |
return outputs | |
def prepare_input(self, image): | |
prev_mask = None | |
if self.with_prev_mask: | |
prev_mask = image[:, 3:, :, :] | |
image = image[:, :3, :, :] | |
if self.binary_prev_mask: | |
prev_mask = (prev_mask > 0.5).float() | |
image = self.normalization(image) | |
return image, prev_mask | |
def backbone_forward(self, image, coord_features=None): | |
raise NotImplementedError | |
def get_coord_features(self, image, prev_mask, points): | |
if self.clicks_groups is not None: | |
points_groups = split_points_by_order( | |
points, groups=(2,) + (1,) * (len(self.clicks_groups) - 2) + (-1,) | |
) | |
coord_features = [ | |
dist_map(image, pg) | |
for dist_map, pg in zip(self.dist_maps, points_groups) | |
] | |
coord_features = torch.cat(coord_features, dim=1) | |
else: | |
coord_features = self.dist_maps(image, points) | |
if prev_mask is not None: | |
coord_features = torch.cat((prev_mask, coord_features), dim=1) | |
return coord_features | |
def split_points_by_order(tpoints: torch.Tensor, groups): | |
points = tpoints.cpu().numpy() | |
num_groups = len(groups) | |
bs = points.shape[0] | |
num_points = points.shape[1] // 2 | |
groups = [x if x > 0 else num_points for x in groups] | |
group_points = [np.full((bs, 2 * x, 3), -1, dtype=np.float32) for x in groups] | |
last_point_indx_group = np.zeros((bs, num_groups, 2), dtype=np.int) | |
for group_indx, group_size in enumerate(groups): | |
last_point_indx_group[:, group_indx, 1] = group_size | |
for bindx in range(bs): | |
for pindx in range(2 * num_points): | |
point = points[bindx, pindx, :] | |
group_id = int(point[2]) | |
if group_id < 0: | |
continue | |
is_negative = int(pindx >= num_points) | |
if group_id >= num_groups or ( | |
group_id == 0 and is_negative | |
): # disable negative first click | |
group_id = num_groups - 1 | |
new_point_indx = last_point_indx_group[bindx, group_id, is_negative] | |
last_point_indx_group[bindx, group_id, is_negative] += 1 | |
group_points[group_id][bindx, new_point_indx, :] = point | |
group_points = [ | |
torch.tensor(x, dtype=tpoints.dtype, device=tpoints.device) | |
for x in group_points | |
] | |
return group_points | |