Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
from isegm.model import ops | |
class ConvHead(nn.Module): | |
def __init__( | |
self, | |
out_channels, | |
in_channels=32, | |
num_layers=1, | |
kernel_size=3, | |
padding=1, | |
norm_layer=nn.BatchNorm2d, | |
): | |
super(ConvHead, self).__init__() | |
convhead = [] | |
for i in range(num_layers): | |
convhead.extend( | |
[ | |
nn.Conv2d(in_channels, in_channels, kernel_size, padding=padding), | |
nn.ReLU(), | |
norm_layer(in_channels) | |
if norm_layer is not None | |
else nn.Identity(), | |
] | |
) | |
convhead.append(nn.Conv2d(in_channels, out_channels, 1, padding=0)) | |
self.convhead = nn.Sequential(*convhead) | |
def forward(self, *inputs): | |
return self.convhead(inputs[0]) | |
class SepConvHead(nn.Module): | |
def __init__( | |
self, | |
num_outputs, | |
in_channels, | |
mid_channels, | |
num_layers=1, | |
kernel_size=3, | |
padding=1, | |
dropout_ratio=0.0, | |
dropout_indx=0, | |
norm_layer=nn.BatchNorm2d, | |
): | |
super(SepConvHead, self).__init__() | |
sepconvhead = [] | |
for i in range(num_layers): | |
sepconvhead.append( | |
SeparableConv2d( | |
in_channels=in_channels if i == 0 else mid_channels, | |
out_channels=mid_channels, | |
dw_kernel=kernel_size, | |
dw_padding=padding, | |
norm_layer=norm_layer, | |
activation="relu", | |
) | |
) | |
if dropout_ratio > 0 and dropout_indx == i: | |
sepconvhead.append(nn.Dropout(dropout_ratio)) | |
sepconvhead.append( | |
nn.Conv2d( | |
in_channels=mid_channels, | |
out_channels=num_outputs, | |
kernel_size=1, | |
padding=0, | |
) | |
) | |
self.layers = nn.Sequential(*sepconvhead) | |
def forward(self, *inputs): | |
x = inputs[0] | |
return self.layers(x) | |
class SeparableConv2d(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
dw_kernel, | |
dw_padding, | |
dw_stride=1, | |
activation=None, | |
use_bias=False, | |
norm_layer=None, | |
): | |
super(SeparableConv2d, self).__init__() | |
_activation = ops.select_activation_function(activation) | |
self.body = nn.Sequential( | |
nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=dw_kernel, | |
stride=dw_stride, | |
padding=dw_padding, | |
bias=use_bias, | |
groups=in_channels, | |
), | |
nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, bias=use_bias | |
), | |
norm_layer(out_channels) if norm_layer is not None else nn.Identity(), | |
_activation(), | |
) | |
def forward(self, x): | |
return self.body(x) | |