Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import torch | |
import torch._utils | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .ocr import SpatialGather_Module, SpatialOCR_Module | |
from .resnetv1b import BasicBlockV1b, BottleneckV1b | |
relu_inplace = True | |
class HighResolutionModule(nn.Module): | |
def __init__( | |
self, | |
num_branches, | |
blocks, | |
num_blocks, | |
num_inchannels, | |
num_channels, | |
fuse_method, | |
multi_scale_output=True, | |
norm_layer=nn.BatchNorm2d, | |
align_corners=True, | |
): | |
super(HighResolutionModule, self).__init__() | |
self._check_branches(num_branches, num_blocks, num_inchannels, num_channels) | |
self.num_inchannels = num_inchannels | |
self.fuse_method = fuse_method | |
self.num_branches = num_branches | |
self.norm_layer = norm_layer | |
self.align_corners = align_corners | |
self.multi_scale_output = multi_scale_output | |
self.branches = self._make_branches( | |
num_branches, blocks, num_blocks, num_channels | |
) | |
self.fuse_layers = self._make_fuse_layers() | |
self.relu = nn.ReLU(inplace=relu_inplace) | |
def _check_branches(self, num_branches, num_blocks, num_inchannels, num_channels): | |
if num_branches != len(num_blocks): | |
error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format( | |
num_branches, len(num_blocks) | |
) | |
raise ValueError(error_msg) | |
if num_branches != len(num_channels): | |
error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format( | |
num_branches, len(num_channels) | |
) | |
raise ValueError(error_msg) | |
if num_branches != len(num_inchannels): | |
error_msg = "NUM_BRANCHES({}) <> NUM_INCHANNELS({})".format( | |
num_branches, len(num_inchannels) | |
) | |
raise ValueError(error_msg) | |
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): | |
downsample = None | |
if ( | |
stride != 1 | |
or self.num_inchannels[branch_index] | |
!= num_channels[branch_index] * block.expansion | |
): | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.num_inchannels[branch_index], | |
num_channels[branch_index] * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
self.norm_layer(num_channels[branch_index] * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block( | |
self.num_inchannels[branch_index], | |
num_channels[branch_index], | |
stride, | |
downsample=downsample, | |
norm_layer=self.norm_layer, | |
) | |
) | |
self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion | |
for i in range(1, num_blocks[branch_index]): | |
layers.append( | |
block( | |
self.num_inchannels[branch_index], | |
num_channels[branch_index], | |
norm_layer=self.norm_layer, | |
) | |
) | |
return nn.Sequential(*layers) | |
def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
branches = [] | |
for i in range(num_branches): | |
branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) | |
return nn.ModuleList(branches) | |
def _make_fuse_layers(self): | |
if self.num_branches == 1: | |
return None | |
num_branches = self.num_branches | |
num_inchannels = self.num_inchannels | |
fuse_layers = [] | |
for i in range(num_branches if self.multi_scale_output else 1): | |
fuse_layer = [] | |
for j in range(num_branches): | |
if j > i: | |
fuse_layer.append( | |
nn.Sequential( | |
nn.Conv2d( | |
in_channels=num_inchannels[j], | |
out_channels=num_inchannels[i], | |
kernel_size=1, | |
bias=False, | |
), | |
self.norm_layer(num_inchannels[i]), | |
) | |
) | |
elif j == i: | |
fuse_layer.append(None) | |
else: | |
conv3x3s = [] | |
for k in range(i - j): | |
if k == i - j - 1: | |
num_outchannels_conv3x3 = num_inchannels[i] | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_inchannels[j], | |
num_outchannels_conv3x3, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=False, | |
), | |
self.norm_layer(num_outchannels_conv3x3), | |
) | |
) | |
else: | |
num_outchannels_conv3x3 = num_inchannels[j] | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_inchannels[j], | |
num_outchannels_conv3x3, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=False, | |
), | |
self.norm_layer(num_outchannels_conv3x3), | |
nn.ReLU(inplace=relu_inplace), | |
) | |
) | |
fuse_layer.append(nn.Sequential(*conv3x3s)) | |
fuse_layers.append(nn.ModuleList(fuse_layer)) | |
return nn.ModuleList(fuse_layers) | |
def get_num_inchannels(self): | |
return self.num_inchannels | |
def forward(self, x): | |
if self.num_branches == 1: | |
return [self.branches[0](x[0])] | |
for i in range(self.num_branches): | |
x[i] = self.branches[i](x[i]) | |
x_fuse = [] | |
for i in range(len(self.fuse_layers)): | |
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
for j in range(1, self.num_branches): | |
if i == j: | |
y = y + x[j] | |
elif j > i: | |
width_output = x[i].shape[-1] | |
height_output = x[i].shape[-2] | |
y = y + F.interpolate( | |
self.fuse_layers[i][j](x[j]), | |
size=[height_output, width_output], | |
mode="bilinear", | |
align_corners=self.align_corners, | |
) | |
else: | |
y = y + self.fuse_layers[i][j](x[j]) | |
x_fuse.append(self.relu(y)) | |
return x_fuse | |
class HighResolutionNet(nn.Module): | |
def __init__( | |
self, | |
width, | |
num_classes, | |
ocr_width=256, | |
small=False, | |
norm_layer=nn.BatchNorm2d, | |
align_corners=True, | |
): | |
super(HighResolutionNet, self).__init__() | |
self.norm_layer = norm_layer | |
self.width = width | |
self.ocr_width = ocr_width | |
self.align_corners = align_corners | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = norm_layer(64) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn2 = norm_layer(64) | |
self.relu = nn.ReLU(inplace=relu_inplace) | |
num_blocks = 2 if small else 4 | |
stage1_num_channels = 64 | |
self.layer1 = self._make_layer( | |
BottleneckV1b, 64, stage1_num_channels, blocks=num_blocks | |
) | |
stage1_out_channel = BottleneckV1b.expansion * stage1_num_channels | |
self.stage2_num_branches = 2 | |
num_channels = [width, 2 * width] | |
num_inchannels = [ | |
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels)) | |
] | |
self.transition1 = self._make_transition_layer( | |
[stage1_out_channel], num_inchannels | |
) | |
self.stage2, pre_stage_channels = self._make_stage( | |
BasicBlockV1b, | |
num_inchannels=num_inchannels, | |
num_modules=1, | |
num_branches=self.stage2_num_branches, | |
num_blocks=2 * [num_blocks], | |
num_channels=num_channels, | |
) | |
self.stage3_num_branches = 3 | |
num_channels = [width, 2 * width, 4 * width] | |
num_inchannels = [ | |
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels)) | |
] | |
self.transition2 = self._make_transition_layer( | |
pre_stage_channels, num_inchannels | |
) | |
self.stage3, pre_stage_channels = self._make_stage( | |
BasicBlockV1b, | |
num_inchannels=num_inchannels, | |
num_modules=3 if small else 4, | |
num_branches=self.stage3_num_branches, | |
num_blocks=3 * [num_blocks], | |
num_channels=num_channels, | |
) | |
self.stage4_num_branches = 4 | |
num_channels = [width, 2 * width, 4 * width, 8 * width] | |
num_inchannels = [ | |
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels)) | |
] | |
self.transition3 = self._make_transition_layer( | |
pre_stage_channels, num_inchannels | |
) | |
self.stage4, pre_stage_channels = self._make_stage( | |
BasicBlockV1b, | |
num_inchannels=num_inchannels, | |
num_modules=2 if small else 3, | |
num_branches=self.stage4_num_branches, | |
num_blocks=4 * [num_blocks], | |
num_channels=num_channels, | |
) | |
last_inp_channels = np.int(np.sum(pre_stage_channels)) | |
if self.ocr_width > 0: | |
ocr_mid_channels = 2 * self.ocr_width | |
ocr_key_channels = self.ocr_width | |
self.conv3x3_ocr = nn.Sequential( | |
nn.Conv2d( | |
last_inp_channels, | |
ocr_mid_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
), | |
norm_layer(ocr_mid_channels), | |
nn.ReLU(inplace=relu_inplace), | |
) | |
self.ocr_gather_head = SpatialGather_Module(num_classes) | |
self.ocr_distri_head = SpatialOCR_Module( | |
in_channels=ocr_mid_channels, | |
key_channels=ocr_key_channels, | |
out_channels=ocr_mid_channels, | |
scale=1, | |
dropout=0.05, | |
norm_layer=norm_layer, | |
align_corners=align_corners, | |
) | |
self.cls_head = nn.Conv2d( | |
ocr_mid_channels, | |
num_classes, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True, | |
) | |
self.aux_head = nn.Sequential( | |
nn.Conv2d( | |
last_inp_channels, | |
last_inp_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
norm_layer(last_inp_channels), | |
nn.ReLU(inplace=relu_inplace), | |
nn.Conv2d( | |
last_inp_channels, | |
num_classes, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True, | |
), | |
) | |
else: | |
self.cls_head = nn.Sequential( | |
nn.Conv2d( | |
last_inp_channels, | |
last_inp_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
), | |
norm_layer(last_inp_channels), | |
nn.ReLU(inplace=relu_inplace), | |
nn.Conv2d( | |
last_inp_channels, | |
num_classes, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True, | |
), | |
) | |
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): | |
num_branches_cur = len(num_channels_cur_layer) | |
num_branches_pre = len(num_channels_pre_layer) | |
transition_layers = [] | |
for i in range(num_branches_cur): | |
if i < num_branches_pre: | |
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
transition_layers.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_channels_pre_layer[i], | |
num_channels_cur_layer[i], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
), | |
self.norm_layer(num_channels_cur_layer[i]), | |
nn.ReLU(inplace=relu_inplace), | |
) | |
) | |
else: | |
transition_layers.append(None) | |
else: | |
conv3x3s = [] | |
for j in range(i + 1 - num_branches_pre): | |
inchannels = num_channels_pre_layer[-1] | |
outchannels = ( | |
num_channels_cur_layer[i] | |
if j == i - num_branches_pre | |
else inchannels | |
) | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d( | |
inchannels, | |
outchannels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=False, | |
), | |
self.norm_layer(outchannels), | |
nn.ReLU(inplace=relu_inplace), | |
) | |
) | |
transition_layers.append(nn.Sequential(*conv3x3s)) | |
return nn.ModuleList(transition_layers) | |
def _make_layer(self, block, inplanes, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
self.norm_layer(planes * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block( | |
inplanes, | |
planes, | |
stride, | |
downsample=downsample, | |
norm_layer=self.norm_layer, | |
) | |
) | |
inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(inplanes, planes, norm_layer=self.norm_layer)) | |
return nn.Sequential(*layers) | |
def _make_stage( | |
self, | |
block, | |
num_inchannels, | |
num_modules, | |
num_branches, | |
num_blocks, | |
num_channels, | |
fuse_method="SUM", | |
multi_scale_output=True, | |
): | |
modules = [] | |
for i in range(num_modules): | |
# multi_scale_output is only used last module | |
if not multi_scale_output and i == num_modules - 1: | |
reset_multi_scale_output = False | |
else: | |
reset_multi_scale_output = True | |
modules.append( | |
HighResolutionModule( | |
num_branches, | |
block, | |
num_blocks, | |
num_inchannels, | |
num_channels, | |
fuse_method, | |
reset_multi_scale_output, | |
norm_layer=self.norm_layer, | |
align_corners=self.align_corners, | |
) | |
) | |
num_inchannels = modules[-1].get_num_inchannels() | |
return nn.Sequential(*modules), num_inchannels | |
def forward(self, x, additional_features=None): | |
feats = self.compute_hrnet_feats(x, additional_features) | |
if self.ocr_width > 0: | |
out_aux = self.aux_head(feats) | |
feats = self.conv3x3_ocr(feats) | |
context = self.ocr_gather_head(feats, out_aux) | |
feats = self.ocr_distri_head(feats, context) | |
out = self.cls_head(feats) | |
return [out, out_aux] | |
else: | |
return [self.cls_head(feats), None] | |
def compute_hrnet_feats(self, x, additional_features): | |
x = self.compute_pre_stage_features(x, additional_features) | |
x = self.layer1(x) | |
x_list = [] | |
for i in range(self.stage2_num_branches): | |
if self.transition1[i] is not None: | |
x_list.append(self.transition1[i](x)) | |
else: | |
x_list.append(x) | |
y_list = self.stage2(x_list) | |
x_list = [] | |
for i in range(self.stage3_num_branches): | |
if self.transition2[i] is not None: | |
if i < self.stage2_num_branches: | |
x_list.append(self.transition2[i](y_list[i])) | |
else: | |
x_list.append(self.transition2[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
y_list = self.stage3(x_list) | |
x_list = [] | |
for i in range(self.stage4_num_branches): | |
if self.transition3[i] is not None: | |
if i < self.stage3_num_branches: | |
x_list.append(self.transition3[i](y_list[i])) | |
else: | |
x_list.append(self.transition3[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
x = self.stage4(x_list) | |
return self.aggregate_hrnet_features(x) | |
def compute_pre_stage_features(self, x, additional_features): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
if additional_features is not None: | |
x = x + additional_features | |
x = self.conv2(x) | |
x = self.bn2(x) | |
return self.relu(x) | |
def aggregate_hrnet_features(self, x): | |
# Upsampling | |
x0_h, x0_w = x[0].size(2), x[0].size(3) | |
x1 = F.interpolate( | |
x[1], size=(x0_h, x0_w), mode="bilinear", align_corners=self.align_corners | |
) | |
x2 = F.interpolate( | |
x[2], size=(x0_h, x0_w), mode="bilinear", align_corners=self.align_corners | |
) | |
x3 = F.interpolate( | |
x[3], size=(x0_h, x0_w), mode="bilinear", align_corners=self.align_corners | |
) | |
return torch.cat([x[0], x1, x2, x3], 1) | |
def load_pretrained_weights(self, pretrained_path=""): | |
model_dict = self.state_dict() | |
if not os.path.exists(pretrained_path): | |
print(f'\nFile "{pretrained_path}" does not exist.') | |
print( | |
"You need to specify the correct path to the pre-trained weights.\n" | |
"You can download the weights for HRNet from the repository:\n" | |
"https://github.com/HRNet/HRNet-Image-Classification" | |
) | |
exit(1) | |
pretrained_dict = torch.load(pretrained_path, map_location={"cuda:0": "cpu"}) | |
pretrained_dict = { | |
k.replace("last_layer", "aux_head").replace("model.", ""): v | |
for k, v in pretrained_dict.items() | |
} | |
pretrained_dict = { | |
k: v for k, v in pretrained_dict.items() if k in model_dict.keys() | |
} | |
model_dict.update(pretrained_dict) | |
self.load_state_dict(model_dict) | |