from pathlib import Path import cv2 import numpy as np from isegm.data.base import ISDataset from isegm.data.sample import DSample class GrabCutDataset(ISDataset): def __init__( self, dataset_path, images_dir_name="data_GT", masks_dir_name="boundary_GT", **kwargs ): super(GrabCutDataset, self).__init__(**kwargs) self.dataset_path = Path(dataset_path) self._images_path = self.dataset_path / images_dir_name self._insts_path = self.dataset_path / masks_dir_name self.dataset_samples = [x.name for x in sorted(self._images_path.glob("*.*"))] self._masks_paths = {x.stem: x for x in self._insts_path.glob("*.*")} def get_sample(self, index) -> DSample: image_name = self.dataset_samples[index] image_path = str(self._images_path / image_name) mask_path = str(self._masks_paths[image_name.split(".")[0]]) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) instances_mask = cv2.imread(mask_path)[:, :, 0].astype(np.int32) instances_mask[instances_mask == 128] = -1 instances_mask[instances_mask > 128] = 1 return DSample( image, instances_mask, objects_ids=[1], ignore_ids=[-1], sample_id=index )