import cv2 import random import numpy as np from albumentations.core.serialization import SERIALIZABLE_REGISTRY from albumentations import ImageOnlyTransform, DualTransform from albumentations.core.transforms_interface import to_tuple from albumentations.augmentations import functional as F from isegm.utils.misc import get_bbox_from_mask, expand_bbox, clamp_bbox, get_labels_with_sizes class UniformRandomResize(DualTransform): def __init__(self, scale_range=(0.9, 1.1), interpolation=cv2.INTER_LINEAR, always_apply=False, p=1): super().__init__(always_apply, p) self.scale_range = scale_range self.interpolation = interpolation def get_params_dependent_on_targets(self, params): scale = random.uniform(*self.scale_range) height = int(round(params['image'].shape[0] * scale)) width = int(round(params['image'].shape[1] * scale)) return {'new_height': height, 'new_width': width} def apply(self, img, new_height=0, new_width=0, interpolation=cv2.INTER_LINEAR, **params): return F.resize(img, height=new_height, width=new_width, interpolation=interpolation) def apply_to_keypoint(self, keypoint, new_height=0, new_width=0, **params): scale_x = new_width / params["cols"] scale_y = new_height / params["rows"] return F.keypoint_scale(keypoint, scale_x, scale_y) def get_transform_init_args_names(self): return "scale_range", "interpolation" @property def targets_as_params(self): return ["image"] class ZoomIn(DualTransform): def __init__( self, height, width, bbox_jitter=0.1, expansion_ratio=1.4, min_crop_size=200, min_area=100, always_resize=False, always_apply=False, p=0.5, ): super(ZoomIn, self).__init__(always_apply, p) self.height = height self.width = width self.bbox_jitter = to_tuple(bbox_jitter) self.expansion_ratio = expansion_ratio self.min_crop_size = min_crop_size self.min_area = min_area self.always_resize = always_resize def apply(self, img, selected_object, bbox, **params): if selected_object is None: if self.always_resize: img = F.resize(img, height=self.height, width=self.width) return img rmin, rmax, cmin, cmax = bbox img = img[rmin:rmax + 1, cmin:cmax + 1] img = F.resize(img, height=self.height, width=self.width) return img def apply_to_mask(self, mask, selected_object, bbox, **params): if selected_object is None: if self.always_resize: mask = F.resize(mask, height=self.height, width=self.width, interpolation=cv2.INTER_NEAREST) return mask rmin, rmax, cmin, cmax = bbox mask = mask[rmin:rmax + 1, cmin:cmax + 1] if isinstance(selected_object, tuple): layer_indx, mask_id = selected_object obj_mask = mask[:, :, layer_indx] == mask_id new_mask = np.zeros_like(mask) new_mask[:, :, layer_indx][obj_mask] = mask_id else: obj_mask = mask == selected_object new_mask = mask.copy() new_mask[np.logical_not(obj_mask)] = 0 new_mask = F.resize(new_mask, height=self.height, width=self.width, interpolation=cv2.INTER_NEAREST) return new_mask def get_params_dependent_on_targets(self, params): instances = params['mask'] is_mask_layer = len(instances.shape) > 2 candidates = [] if is_mask_layer: for layer_indx in range(instances.shape[2]): labels, areas = get_labels_with_sizes(instances[:, :, layer_indx]) candidates.extend([(layer_indx, obj_id) for obj_id, area in zip(labels, areas) if area > self.min_area]) else: labels, areas = get_labels_with_sizes(instances) candidates = [obj_id for obj_id, area in zip(labels, areas) if area > self.min_area] selected_object = None bbox = None if candidates: selected_object = random.choice(candidates) if is_mask_layer: layer_indx, mask_id = selected_object obj_mask = instances[:, :, layer_indx] == mask_id else: obj_mask = instances == selected_object bbox = get_bbox_from_mask(obj_mask) if isinstance(self.expansion_ratio, tuple): expansion_ratio = random.uniform(*self.expansion_ratio) else: expansion_ratio = self.expansion_ratio bbox = expand_bbox(bbox, expansion_ratio, self.min_crop_size) bbox = self._jitter_bbox(bbox) bbox = clamp_bbox(bbox, 0, obj_mask.shape[0] - 1, 0, obj_mask.shape[1] - 1) return { 'selected_object': selected_object, 'bbox': bbox } def _jitter_bbox(self, bbox): rmin, rmax, cmin, cmax = bbox height = rmax - rmin + 1 width = cmax - cmin + 1 rmin = int(rmin + random.uniform(*self.bbox_jitter) * height) rmax = int(rmax + random.uniform(*self.bbox_jitter) * height) cmin = int(cmin + random.uniform(*self.bbox_jitter) * width) cmax = int(cmax + random.uniform(*self.bbox_jitter) * width) return rmin, rmax, cmin, cmax def apply_to_bbox(self, bbox, **params): raise NotImplementedError def apply_to_keypoint(self, keypoint, **params): raise NotImplementedError @property def targets_as_params(self): return ["mask"] def get_transform_init_args_names(self): return ("height", "width", "bbox_jitter", "expansion_ratio", "min_crop_size", "min_area", "always_resize") def remove_image_only_transforms(sdict): if not 'transforms' in sdict: return sdict keep_transforms = [] for tdict in sdict['transforms']: cls = SERIALIZABLE_REGISTRY[tdict['__class_fullname__']] if 'transforms' in tdict: keep_transforms.append(remove_image_only_transforms(tdict)) elif not issubclass(cls, ImageOnlyTransform): keep_transforms.append(tdict) sdict['transforms'] = keep_transforms return sdict