from time import time import numpy as np import torch from isegm.inference import utils from isegm.inference.clicker import Clicker try: get_ipython() from tqdm import tqdm_notebook as tqdm except NameError: from tqdm import tqdm def evaluate_dataset(dataset, predictor, **kwargs): all_ious = [] start_time = time() for index in tqdm(range(len(dataset)), leave=False): sample = dataset.get_sample(index) _, sample_ious, _ = evaluate_sample( sample.image, sample.gt_mask, predictor, sample_id=index, **kwargs ) all_ious.append(sample_ious) end_time = time() elapsed_time = end_time - start_time return all_ious, elapsed_time def evaluate_sample( image, gt_mask, predictor, max_iou_thr, pred_thr=0.49, min_clicks=1, max_clicks=20, sample_id=None, callback=None, ): clicker = Clicker(gt_mask=gt_mask) pred_mask = np.zeros_like(gt_mask) ious_list = [] with torch.no_grad(): predictor.set_input_image(image) for click_indx in range(max_clicks): clicker.make_next_click(pred_mask) pred_probs = predictor.get_prediction(clicker) pred_mask = pred_probs > pred_thr if callback is not None: callback( image, gt_mask, pred_probs, sample_id, click_indx, clicker.clicks_list, ) iou = utils.get_iou(gt_mask, pred_mask) ious_list.append(iou) if iou >= max_iou_thr and click_indx + 1 >= min_clicks: break return clicker.clicks_list, np.array(ious_list, dtype=np.float32), pred_probs